131 research outputs found

    Why Amphibians Are More Sensitive than Mammals to Xenobiotics

    Get PDF
    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device

    Expression of V1A and GRP receptors leads to cellular transformation and increased sensitivity to substance-P analogue-induced growth inhibition.

    Get PDF
    Small-cell lung cancer (SCLC) is a particularly aggressive cancer, which metastasises early. Despite initial sensitivity to radio- and chemo-therapy, it invariably relapses, so that the 2-year survival remains less than 5%. Neuropeptides particularly arginine vasopressin (AVP) and gastrin-releasing peptide (GRP) act as autocrine and paracrine growth factors and the expression of these and their receptors are a hallmark of the disease. Substance-P analogues including [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-substance-P (SP-D) and [Arg6,D-Trp7,9,NmePhe8]-substance-P (6-11) (SP-G) inhibit the growth of SCLC cells by modulating neuropeptide signalling. We show that GRP and V1A receptors expression leads to the development of a transformed phenotype. Addition of neuropeptide provides some protection from etoposide-induced cytotoxicity. Receptor expression also leads to an increased sensitivity to substance-P analogue-induced growth inhibition. We show that SP-D and SP-G act as biased agonists at GRP and V1A receptors causing blockade of Gq-mediated Ca2+ release while directing signalling to activate ERK via a pertussis toxin-sensitive pathway. This is the first description of biased agonism at V1A receptors. This unique pharmacology governs the antiproliferative properties of these agents and highlights their potential therapeutic potential for the treatment of SCLC and particularly in tumours, which have developed resistance to chemotherapy

    Repetition Enhancement for Frequency-Modulated but Not Unmodulated Sounds: A Human MEG Study

    Get PDF
    BACKGROUND: Decoding of frequency-modulated (FM) sounds is essential for phoneme identification. This study investigates selectivity to FM direction in the human auditory system. METHODOLOGY/PRINCIPAL FINDINGS: Magnetoencephalography was recorded in 10 adults during a two-tone adaptation paradigm with a 200-ms interstimulus-interval. Stimuli were pairs of either same or different frequency modulation direction. To control that FM repetition effects cannot be accounted for by their on- and offset properties, we additionally assessed responses to pairs of unmodulated tones with either same or different frequency composition. For the FM sweeps, N1m event-related magnetic field components were found at 103 and 130 ms after onset of the first (S1) and second stimulus (S2), respectively. This was followed by a sustained component starting at about 200 ms after S2. The sustained response was significantly stronger for stimulation with the same compared to different FM direction. This effect was not observed for the non-modulated control stimuli. CONCLUSIONS/SIGNIFICANCE: Low-level processing of FM sounds was characterized by repetition enhancement to stimulus pairs with same versus different FM directions. This effect was FM-specific; it did not occur for unmodulated tones. The present findings may reflect specific interactions between frequency separation and temporal distance in the processing of consecutive FM sweeps

    Rapamycin Blocks Production of KSHV/HHV8: Insights into the Anti-Tumor Activity of an Immunosuppressant Drug

    Get PDF
    Infection with Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) often results in the development of fatal tumors in immunocompromised patients. Studies of renal transplant recipients show that use of the immunosuppressant drug rapamycin, an mTOR inhibitor, both prevents and can induce the regression of Kaposi's sarcoma (KS), an opportunistic tumor that arises within a subset of this infected population. In light of rapamycin's marked anti-KS activity, we tested whether the drug might directly inhibit the KSHV life cycle. We focused on the molecular switch that triggers this predominantly latent virus to enter the lytic (productive) replication phase, since earlier work links this transition to viral persistence and tumorigenesis.In latently infected human B cell lines, we found that rapamycin inhibited entry of the virus into the lytic replication cycle, marked by a loss of expression of the lytic switch protein, replication and transcription activator (RTA). To test for viral-specific effects of rapamycin, we focused our studies on a B cell line with resistance to rapamycin-mediated growth inhibition. Using this line, we found that the drug had minimal effect on cell cycle profiles, cellular proliferation, or the expression of other cellular or latent viral proteins, indicating that the RTA suppression was not a result of global cellular dysregulation. Finally, treatment with rapamycin blocked the production of progeny virions.These results indicate that mTOR plays a role in the regulation of RTA expression and, therefore, KSHV production, providing a potential molecular explanation for the marked clinical success of rapamycin in the treatment and prevention of post-transplant Kaposi's sarcoma. The striking inhibition of rapamycin on KSHV lytic replication, thus, helps explain the apparent paradox of an immunosuppressant drug suppressing the pathogenesis of an opportunistic viral infection

    CD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance

    Get PDF
    Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes
    • …
    corecore