45 research outputs found

    SB 9200, a novel agonist of innate immunity, shows potent antiviral activity against resistant HCV variants

    No full text
    SB 9200 is a novel, first-in-class oral modulator of innate immunity that is believed to act via the activation of the RIG-I and NOD2 pathways. SB 9200 has broad-spectrum antiviral activity against RNA viruses including hepatitis C virus (HCV), norovirus, respiratory syncytial virus, and influenza and has demonstrated activity against hepatitis B virus (HBV) in vitro and in vivo. In phase I clinical trials in chronically infected HCV patients, SB 9200 has been shown to reduce HCV RNA by up to 1.9 log10 . Here, we demonstrate the antiviral activity of SB 9200 against a HCV replicon system and patient derived virus. Using the HCV capture-fusion assay, we show that SB 9200 is active against diverse HCV genotypes and is also effective against HCV derived from patients who relapse following direct-acting antiviral treatment, including viruses containing known NS5A resistance-associated sequences. These data confirm the broad antiviral activity of SB 9200 and indicate that it may have clinical utility in HCV patients who have failed to respond to current antiviral regimens

    SB 9200, a novel agonist of innate immunity, shows potent antiviral activity against resistant HCV variants

    No full text
    SB 9200 is a novel, first-in-class oral modulator of innate immunity that is believed to act via the activation of the RIG-I and NOD2 pathways. SB 9200 has broad-spectrum antiviral activity against RNA viruses including hepatitis C virus (HCV), norovirus, respiratory syncytial virus, and influenza and has demonstrated activity against hepatitis B virus (HBV) in vitro and in vivo. In phase I clinical trials in chronically infected HCV patients, SB 9200 has been shown to reduce HCV RNA by up to 1.9 log10 . Here, we demonstrate the antiviral activity of SB 9200 against a HCV replicon system and patient derived virus. Using the HCV capture-fusion assay, we show that SB 9200 is active against diverse HCV genotypes and is also effective against HCV derived from patients who relapse following direct-acting antiviral treatment, including viruses containing known NS5A resistance-associated sequences. These data confirm the broad antiviral activity of SB 9200 and indicate that it may have clinical utility in HCV patients who have failed to respond to current antiviral regimens

    Pegylated arginine deiminase lowers hepatitis C viral titers and inhibits nitric oxide synthesis.

    No full text
    The arginine-degrading enzyme, arginine deiminase conjugated to polyethylene glycol (ADI-SS PEG 20,000 mw), reduces extracellular arginine, has minimal toxicity, decreases tumor burden and improves liver function in patients with chronic hepatitis C virus infection (HCV) and inoperable hepatocellular carcinoma (HCC). Reduced extracellular arginine inhibits viral replication through unknown mechanisms. It is hypothesized that ADI-SS PEG 20,000 mw reduces HCV viral titers through nitric oxide (NO)-dependent effects. METHODS: The effects of ADI-SS PEG 20,000 mw (dose, 160 IU/m2; three cycles of four once-weekly i.m. injections) on HCV titers, serum NO and plasma arginine, were evaluated using archived plasma from patients with HCC and HCV and in vitro cell model measurements of HCV replication. RESULTS: ADI-SS PEG 20,000 mw selectively inhibited HCV replication in vitro (IC50 = 0.027 IU/mL). Fifteen HCC/HCV patients completed treatment. The HCV titers were reduced by up to 99% in five out of 10 (50%) HCV-serotype 1b patients (P = 0.0093). These patients also experienced significant improvements in liver function (P = 0.0091). There were concomitant reductions of plasma arginine and serum NO levels. The HCV titer was not reduced in HCV-type 2c patients. CONCLUSION: Reduction of extracellular arginine by ADI-SS PEG 20,000 mw in HCC patients reduces HCV viral titers and improves liver function, possibly through suppression of NO
    corecore