32 research outputs found

    InforMing the PAthway of COPD Treatment (IMPACT) trial: fibrinogen levels predict risk of moderate or severe exacerbations

    Get PDF
    Background: Fibrinogen is the first qualified prognostic/predictive biomarker for exacerbations in patients with chronic obstructive pulmonary disease (COPD). The IMPACT trial investigated fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) triple therapy versus FF/VI and UMEC/VI in patients with symptomatic COPD at risk of exacerbations. This analysis used IMPACT trial data to examine the relationship between fibrinogen levels and exacerbation outcomes in patients with COPD. Methods: 8094 patients with a fibrinogen assessment at Week 16 were included, baseline fibrinogen data were not measured. Post hoc analyses were performed by fibrinogen quartiles and by 3.5 g/L threshold. Endpoints included on-treatment exacerbations and adverse events of special interest (AESIs). Results: Rates of moderate, moderate/severe, and severe exacerbations were higher in the highest versus lowest fibrinogen quartile (0.75, 0.92 and 0.15 vs 0.67, 0.79 and 0.10, respectively). The rate ratios (95% confidence interval [CI]) for exacerbations in patients with fibrinogen levels ≥ 3.5 g/L versus those with fibrinogen levels < 3.5 g/L were 1.03 (0.95, 1.11) for moderate exacerbations, 1.08 (1.00, 1.15) for moderate/severe exacerbations, and 1.30 (1.10, 1.54) for severe exacerbations. There was an increased risk of moderate/severe exacerbation (hazard ratio [95% CI]: highest vs lowest quartile 1.16 [1.04, 1.228]; ≥ 3.5 g/L vs < 3.5 g/L: 1.09 [1.00, 1.16]) and severe exacerbation (1.35 [1.09, 1.69]; 1.27 [1.08, 1.47], respectively) with increasing fibrinogen level. Cardiovascular AESIs were highest in patients in the highest fibrinogen quartile. Conclusions: Rate and risk of exacerbations was higher in patients with higher fibrinogen levels. This supports the validity of fibrinogen as a predictive biomarker for COPD exacerbations, and highlights the potential use of fibrinogen as an enrichment strategy in trials examining exacerbation outcomes. Trial registration: NCT0216451

    Stable ultrahigh-density magneto-optical recordings using introduced linear defects

    Full text link
    The stability of data bits in magnetic recording media at ultrahigh densities is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized spin domains, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures, are more stable against thermal self-erasure than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of ∼\sim100 Gbit inch−2^{-2} have been demonstrated using recent advances in the bit writing and reading techniques. But the roughness and mobility of the magnetic domain walls prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometers in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch−2^{-2}.Comment: 5 pages, 4 figures, see also an article in TRN News at http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm

    RMDAP: A Versatile, Ready-To-Use Toolbox for Multigene Genetic Transformation

    Get PDF
    Background: The use of transgenes to improve complex traits in crops has challenged current genetic transformation technology for multigene transfer. Therefore, a multigene transformation strategy for use in plant molecular biology and plant genetic breeding is thus needed. Methodology/Principal Findings: Here we describe a versatile, ready-to-use multigene genetic transformation method, named the Recombination-assisted Multifunctional DNA Assembly Platform (RMDAP), which combines many of the useful features of existing plant transformation systems. This platform incorporates three widely-used recombination systems, namely, Gateway technology, in vivo Cre/loxP and recombineering into a highly efficient and reliable approach for gene assembly. RMDAP proposes a strategy for gene stacking and contains a wide range of flexible, modular vectors offering a series of functionally validated genetic elements to manipulate transgene overexpression or gene silencing involved in a metabolic pathway. In particular, the ability to construct a multigene marker-free vector is another attractive feature. The built-in flexibility of original vectors has greatly increased the expansibility and applicability of the system. A proof-ofprinciple experiment was confirmed by successfully transferring several heterologous genes into the plant genome. Conclusions/Significance: This platform is a ready-to-use toolbox for full exploitation of the potential for coordinate regulation of metabolic pathways and molecular breeding, and will eventually achieve the aim of what we call ‘‘one-sto

    Uncommon Posterior Cranial Fossa Anomalies - Mri With Clinical Correlation

    No full text
    The clinical and MRI findings in two cases of rhombencephalosynapsis (RS) and two of tectocerebellar dysraphia (TCD) with an associated occipital encephalocele were studied to elucidate the clinical picture and embryogenesis of these rare anomalies. To our knowledge, only one case of TCD [1] and four of RS [2, 3] examined by MRI during life have been reported. The clinical picture in the cases of RS was rather constant and there were similarities with TCD. Consideration of the embryogenesis of the neural tube suggests a temporal proximity of the abnormalities, with TCD arising at a slightly earlier time
    corecore