169 research outputs found

    Moving from evidence-based medicine to evidence-based health.

    Get PDF
    While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny

    Get PDF
    Stem cells are unique in that they possess both the capacity to self-renew and thereby maintain their original pool as well as the capacity to differentiate into mature cells. In the past number of years, transcriptional profiling of enriched stem cell populations has been extensively performed in an attempt to identify a universal stem cell gene expression signature. While stem-cell-specific transcripts were identified in each case, this approach has thus far been insufficient to identify a universal group of core “stemness” genes ultimately responsible for self-renewal and multipotency. Similarly, in the hematopoietic system, comparisons of transcriptional profiles between different hematopoietic cell stages have had limited success in revealing core genes ultimately responsible for the initiation of differentiation and lineage specification. Here, we propose that the combined use of transcriptional profiling and genetic linkage analysis, an approach called “genetical genomics”, can be a valuable tool to assist in the identification of genes and gene networks that specify “stemness” and cell fate decisions. We review past studies of hematopoietic cells that utilized transcriptional profiling and/or genetic linkage analysis, and discuss several potential future applications of genetical genomics

    Mortality following development of breast cancer while using oestrogen or oestrogen plus progestin: a computer record-linkage study

    Get PDF
    The literature on the relationship between breast cancer mortality and postmenopausal oestrogen and combined oestrogen/progestin therapy is seemingly contradictory. This study explored survival after exposure to oestrogen or oestrogen plus progestin at or in the year prior to breast cancer diagnosis. Information on patients first diagnosed with invasive breast cancer between 1993 and 1998 was linked with outpatient pharmacy data from 1992 to 2000. Patients were classified according to use of oestrogen alone or oestrogen plus progestin at or in the year prior to diagnosis. Compared to nonusers, and adjusting for age at diagnosis, race/ethnicity, tumour size and grade, oestrogen receptor status, surgery status, and chemotherapy and hormone therapy for breast cancer treatment, oestrogen plus progestin users had lower all-cause mortality (stage I hazard ratio (HR)=0.69, 95% confidence interval (CI)=0.48–0.99; stage II HR=0.53, 95% CI=0.39–0.72) and breast cancer mortality (stage I HR=0.52, 95% CI=0.26–1.04; stage II HR=0.69, 95% CI=0.48–0.98). Oestrogen users experienced little or no survival benefit for all-cause mortality (stage I HR=1.04, 95% CI=0.77–1.42; stage II HR=0.86, 95% CI=0.65–1.14) or breast cancer mortality (stage I HR=1.23, 95% CI 0.72–2.10; stage II HR=1.01, 95% CI 0.72–1.41). Our findings suggest, relative to nonusers, a lower risk of death from all causes and from breast cancer in patients who were diagnosed with breast cancer while exposed to oestrogen plus progestin, but not in patients exposed to oestrogen only

    Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system

    Epigenetic Drugs Can Stimulate Metastasis through Enhanced Expression of the Pro-Metastatic Ezrin Gene

    Get PDF
    Ezrin has been reported to be upregulated in many tumors and to participate in metastatic progression. No study has addressed epigenetic modification in the regulation of Ezrin gene expression, the importance of which is unknown. Here, we report that highly metastatic rhabdomyosarcoma (RMS) cells with high levels of Ezrin have elevated acetyl-H3-K9 and tri-methyl-H3-K4 as well as reduced DNA methylation at the Ezrin gene promoter. Conversely, poorly metastatic RMS cells with low levels of Ezrin have reduced acetyl-H3-K9 and elevated methylation. Thus epigenetic covalent modifications to histones within nucleosomes of the Ezrin gene promoter are linked to Ezrin expression, which in fact can be regulated by epigenetic mechanisms. Notably, treatment with histone deacetylase (HDAC) inhibitors or DNA demethylating agents could restore Ezrin expression and stimulate the metastatic potential of poorly metastatic RMS cells characterized by low Ezrin levels. However, the ability of epigenetic drugs to stimulate metastasis in RMS cells was inhibited by expression of an Ezrin-specific shRNA. Our data demonstrate the potential risk associated with clinical application of broadly acting covalent epigenetic modifiers, and highlight the value of combination therapies that include agents specifically targeting potent pro-metastatic genes

    Lack of PPARγ in Myeloid Cells Confers Resistance to Listeria monocytogenes Infection

    Get PDF
    The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγflox/flox). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6Chi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data
    corecore