208 research outputs found
Early Galactic Evolution of Carbon, Nitrogen and Oxygen
We present results on carbon, nitrogen, and oxygen abundances for a sample of
unevolved metal-poor stars with metallicities in the range -0.3< [Fe/H]< -3.
Oxygen abundances derived from different indicators are compared showing
consistently that in the range 0.3 >[Fe/H]>-3.0, the [O/Fe] ratio increases
from approximately 0 to 1. We find a good agreement between abundances based on
the forbidden line, the OH and IR triplet lines when gravities based on
Hipparcos} parallaxes are considered for the sample stars. Gravities derived
from LTE ionization balance in metal-poor stars with [Fe/H]< -1 are likely too
low, and could be responsible for an underestimation of the oxygen abundances
derived using the [OI] line. [C/Fe] and [N/Fe] ratios appear to be constant,
independently of metallicity, in the same range. However, they show larger
scatter than oxygen at a given metallicity, which could reflect the larger
variety of stellar production sites for these other elements.Comment: 10 pages, 3 figures, To appear in the proceedings of the conference
"The Chemical Evolution of The Milky Way: Stars versus Clusters", eds. F.
Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199
Predictions for the X-ray circumgalactic medium of edge-on discs and spheroids
We investigate how the X-ray circumgalactic medium (CGM) of present-day galaxies depends on galaxy morphology and azimuthal angle using mock observations generated from the EAGLE cosmological hydrodynamic simulation. By creating mock stacks of eROSITA-observed galaxies oriented to be edge-on, we make several observationally-testable predictions for galaxies in the stellar mass range M⋆ = 1010.7 − 11.2 M⊙. The soft X-ray CGM of disc galaxies is between 60 and 100% brighter along the semi-major axis compared to the semi-minor axis, between 10-30 kpc. This azimuthal dependence is a consequence of the hot (T &gt; 106 K) CGM being non-spherical: specifically it is flattened along the minor axis such that denser and more luminous gas resides in the disc plane and co-rotates with the galaxy. Outflows enrich and heat the CGM preferentially perpendicular to the disc, but we do not find an observationally-detectable signature along the semi-minor axis. Spheroidal galaxies have hotter CGMs than disc galaxies related to spheroids residing at higher halos masses, which may be measurable through hardness ratios spanning the 0.2 − 1.5 keV band. While spheroids appear to have brighter CGMs than discs for the selected fixed M⋆ bin, this owes to spheroids having higher stellar and halo masses within that M⋆ bin, and obscures the fact that both simulated populations have similar total CGM luminosities at the exact same M⋆. Discs have brighter emission inside 20 kpc and more steeply declining profiles with radius than spheroids. We predict that the eROSITA 4-year all-sky survey should detect many of the signatures we predict here, although targeted follow-up observations of highly inclined nearby discs after the survey may be necessary to observe some of our azimuthally-dependent predictions
EAGLE and Illustris-TNG Predictions for Resolved eROSITA X-Ray Observations of the Circumgalactic Medium around Normal Galaxies
We simulate stacked observations of nearby hot X-ray coronae associated with galaxies in the EAGLE and Illustris-TNG hydrodynamic simulations. A forward modeling pipeline is developed to predict 4-year eROSITA observations and stacked image analysis, including the effects of instrumental and astrophysical backgrounds. We propose an experiment to stack z~0.01 galaxies separated by specific star-formation rate (sSFR) to examine how the hot (T>=10^6 K) circumgalactic medium (CGM) differs for high- and low-sSFR galaxies. The simulations indicate that the hot CGM of low-mass (M_*~10^{10.5} Msol), high-sSFR (defined as the top one-third ranked by sSFR) central galaxies will be detectable to a galactocentric radius r~30-50 kpc. Both simulations predict lower luminosities at fixed stellar mass for the low-sSFR galaxies (the lower third of sSFR) with Illustris-TNG predicting 3x brighter coronae around high-sSFR galaxies than EAGLE. Both simulations predict detectable emission out to r~150-200 kpc for stacks centered on high-mass (M_*~10^{11.0} Msol) galaxies, with EAGLE predicting brighter X-ray halos. The extended soft X-ray luminosity correlates strongly and positively with the mass of circumgalactic gas within the virial radius (f_{CGM}). Prior analyses of both simulations have established that f_{CGM} is reduced by expulsive feedback driven mainly by black hole growth, which quenches galaxy growth by inhibiting replenishment of the ISM. Both simulations predict that eROSITA stacks should not only conclusively detect and resolve the hot CGM around L^* galaxies for the first time, but provide a powerful probe of how the baryon cycle operates, for which there remains an absence of consensus between state-of-the-art simulations
Imprint of Drivers of Galaxy Formation in the Circumgalactic Medium
The majority of baryons reside beyond the optical extent of a galaxy in the circumgalactic and intergalactic media (CGM/IGM). Gaseous halos are inextricably linked to the appearance of their host galaxies through a complex story of accretion, feedback, and continual recycling. The energetic processes, which define the state of gas in the CGM, are the same ones that 1) regulate stellar growth so that it is not over-efficient, and 2) create the diversity of today's galaxy colors, SFRs, and morphologies spanning Hubble's Tuning Fork Diagram. They work in concert to set the speed of growth on the star-forming Main Sequence, transform a galaxy across the Green Valley, and maintain a galaxy's quenched appearance on the Red Sequence. Most baryons in halos more massive than 10^12 Msolar along with their high-energy physics and dynamics remain invisible because that gas is heated above the UV ionization states. We argue that information on many of the essential drivers of galaxy evolution is primarily contained in this "missing" hot gas phase. Completing the picture of galaxy formation requires uncovering the physical mechanisms behind stellar and SMBH feedback driving mass, metals, and energy into the CGM. By opening galactic hot halos to new wavebands, we not only obtain fossil imprints of >13 Gyrs of evolution, but observe on-going hot-mode accretion, the deposition of superwind outflows into the CGM, and the re-arrangement of baryons by SMBH feedback. A description of the flows of mass, metals, and energy will only be complete by observing the thermodynamic states, chemical compositions, structure, and dynamics of T>=10^6 K halos. These measurements are uniquely possible with a next-generation X-ray observatory if it provides the sensitivity to detect faint CGM emission, spectroscopic power to measure absorption lines and gas motions, and high spatial resolution to resolve structures
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Implementation and evaluation of a nurse-centered computerized potassium regulation protocol in the intensive care unit - a before and after analysis
<p>Abstract</p> <p>Background</p> <p>Potassium disorders can cause major complications and must be avoided in critically ill patients. Regulation of potassium in the intensive care unit (ICU) requires potassium administration with frequent blood potassium measurements and subsequent adjustments of the amount of potassium administrated. The use of a potassium replacement protocol can improve potassium regulation. For safety and efficiency, computerized protocols appear to be superior over paper protocols. The aim of this study was to evaluate if a computerized potassium regulation protocol in the ICU improved potassium regulation.</p> <p>Methods</p> <p>In our surgical ICU (12 beds) and cardiothoracic ICU (14 beds) at a tertiary academic center, we implemented a nurse-centered computerized potassium protocol integrated with the pre-existent glucose control program called GRIP (Glucose Regulation in Intensive Care patients). Before implementation of the computerized protocol, potassium replacement was physician-driven. Potassium was delivered continuously either by central venous catheter or by gastric, duodenal or jejunal tube. After every potassium measurement, nurses received a recommendation for the potassium administration rate and the time to the next measurement. In this before-after study we evaluated potassium regulation with GRIP. The attitude of the nursing staff towards potassium regulation with computer support was measured with questionnaires.</p> <p>Results</p> <p>The patient cohort consisted of 775 patients before and 1435 after the implementation of computerized potassium control. The number of patients with hypokalemia (<3.5 mmol/L) and hyperkalemia (>5.0 mmol/L) were recorded, as well as the time course of potassium levels after ICU admission. The incidence of hypokalemia and hyperkalemia was calculated. Median potassium-levels were similar in both study periods, but the level of potassium control improved: the incidence of hypokalemia decreased from 2.4% to 1.7% (P < 0.001) and hyperkalemia from 7.4% to 4.8% (P < 0.001). Nurses indicated that they considered computerized potassium control an improvement over previous practice.</p> <p>Conclusions</p> <p>Computerized potassium control, integrated with the nurse-centered GRIP program for glucose regulation, is effective and reduces the prevalence of hypo- and hyperkalemia in the ICU compared with physician-driven potassium regulation.</p
Long-distance endosome trafficking drives fungal effector production during plant infection
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion
R5 Clade C SHIV Strains with Tier 1 or 2 Neutralization Sensitivity: Tools to Dissect Env Evolution and to Develop AIDS Vaccines in Primate Models
Background: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. Methodology/Principal Findings: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an “early,” recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a “late” form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to “late” SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4 T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. Conclusions/Significance: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates
Evaluation of genetic susceptibility to childhood allergy and asthma in an African American urban population
<p>Abstract</p> <p>Background</p> <p>Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify high risk groups are variable and replication of genetic associations in African Americans is warranted.</p> <p>Methods</p> <p>We evaluated 41 single nucleotide polymorphisms (SNP) and a deletion corresponding to 11 genes demonstrating association with asthma in the literature, for association with asthma, atopy, testing positive for food allergens, eosinophilia, and total serum IgE among 141 African American children living in Detroit, Michigan. Independent SNP and haplotype associations were investigated for association with each trait, and subsequently assessed in concert using a genetic risk score (GRS).</p> <p>Results</p> <p>Statistically significant associations with asthma were observed for SNPs in <it>GSTM1, MS4A2</it>, and <it>GSTP1 </it>genes, after correction for multiple testing. Chromosome 11 haplotype CTACGAGGCC (corresponding to <it>MS4A2 </it>rs574700, rs1441586, rs556917, rs502581, rs502419 and <it>GSTP1 </it>rs6591256, rs17593068, rs1695, rs1871042, rs947895) was associated with a nearly five-fold increase in the odds of asthma (Odds Ratio (OR) = 4.8, <it>p </it>= 0.007). The GRS was significantly associated with a higher odds of asthma (OR = 1.61, 95% Confidence Interval = 1.21, 2.13; <it>p </it>= 0.001).</p> <p>Conclusions</p> <p>Variation in genes associated with asthma in predominantly non-African ethnic groups contributed to increased odds of asthma in this African American study population. Evaluating all significant variants in concert helped to identify the highest risk subset of this group.</p
- …