23 research outputs found

    Feasibility of real-time three-dimensional stress echocardiography: pharmacological and semi-supine exercise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real time three dimensional (RT3D) echocardiography is an accurate and reproducible method for assessing left ventricular shape and function.</p> <p>Aim</p> <p>assess the feasibility and reproducibility of RT3D stress echocardiography (SE) (exercise and pharmacological) in the evaluation of left ventricular function compared to 2D.</p> <p>Methods and results</p> <p>One hundred eleven patients with known or suspected coronary artery disease underwent 2D and RT3DSE. The agreement in WMSI, EDV, ESV measurements was made off-line.</p> <p>The feasibility of RT-3DSE was 67%. The inter-observer variability for WMSI by RT3D echo was higher during exercise and with suboptimal quality images (good: k = 0.88; bad: k = 0.69); and with high heart rate both for pharmacological (HR < 100 bpm, k = 0.83; HR ≥ 100 bpm, k = 0.49) and exercise SE (HR < 120 bpm, k = 0.88; HR ≥ 120 bpm, k = 0.78). The RT3D reproducibility was high for ESV volumes (0.3 ± 14 ml; CI 95%: -27 to 27 ml; p = n.s.).</p> <p>Conclusions</p> <p>RT3DSE is more vulnerable than 2D due to tachycardia, signal quality, patient decubitus and suboptimal resting image quality, making exercise RT3DSE less attractive than pharmacological stress.</p

    Comparison of exercise, dobutamine-atropine and dipyridamole-atropine stress echocardiography in detecting coronary artery disease

    Get PDF
    BACKGROUND: Dipyridamole and dobutamine stress echocardiography testing are most widely utilized, but their sensitivity remained suboptimal in comparison to routine exercise stress echocardiography. The aim of our study is to compare, head-to-head, exercise, dobutamine and dipyridamole stress echocardiography tests, performed with state-of-the-art protocols in a large scale prospective group of patients. METHODS: Dipyridamole-atropine (Dipatro: 0.84 mg/kg over 10 min i.v. dipyridamole with addition of up to 1 mg of atropine), dobutamine-atropine (Dobatro: up to 40 mcg/kg/min i.v. dobutamine with addition of up to 1 mg of atropine) and exercise (Ex, Bruce) were performed in 166 pts. Of them, 117 pts without resting wall motion abnormalities were enrolled in study (91 male; mean age 54 ± 10 years; previous non-transmural myocardial infarction in 32 pts, angina pectoris in 69 pts and atypical chest pain in 16 pts). Tests were performed in random sequence, in 3 different days, within 5 day period under identical therapy. All patients underwent coronary angiography. RESULTS: Significant coronary artery disease (CAD; ≥50% diameter stenosis) was present in 69 pts (57 pts 1-vessel CAD, 12 multivessel CAD) and absent in 48 pts. Sensitivity (Sn) was 96%, 93% and 90%, whereas specificity (Sp) was 92%, 92% and 87% for Dobatro, Dipatro and Ex, respectively (p = ns). Concomitant beta blocker therapy did not influence peak rate-pressure product and Sn of Dobatro and Dipatro (p = ns). CONCLUSION: When state-of-the-art protocols are used, dipyridamole and dobutamine stress echocardiography have comparable and high diagnostic accuracy, similar to maximal post-exercise treadmill stress echocardiography

    Anti-ischemic therapy and stress testing: pathophysiologic, diagnostic and prognostic implications

    Get PDF
    Anti-ischemic therapy, in particular beta-blockers, is the most commonly employed drug for the control of myocardial ischemia in patients with stable coronary artery disease. Its widespread use also in patients with suspected coronary artery disease has important practical, clinical diagnostic and prognostic implications because diagnostic tests are heavily influenced by its effects. In the present review, the pathophysiological mechanisms of ischemia protection by antianginal therapy are described. Not all stressors are created equal in front of the different classes of antianginal drugs and on their turn the different classes of drugs exert different levels of protection on inducible ischemia. Several clinical implications can be drawn: From the diagnostic viewpoint antianginal therapy decreases test sensitivity, offsetting the real ischemic burden for a too high percentage of false negative tests. From the prognostic viewpoint test positivity in medical therapy identifies a group of subjects at higher risk of experiencing cardiac death and positivity on medical therapy can be considered a parameter of ischemia severity. Nonetheless in patients with known coronary artery disease the ability of antianginal therapy to modify the ischemic threshold at stress testing represent a powerful means to assess therapy efficacy. From a practical viewpoint, the use of antianginal therapy at time of testing has advantages and disadvantages which are largely dependent on the purpose a test is performed: if the purpose of testing is to diagnose ischemia, it should be performed in the absence of antianginal medications. If the purpose of testing is to assess the protective effects of antianginal therapy, the test should be performed on medications

    The diagnostic accuracy of pharmacological stress echocardiography for the assessment of coronary artery disease: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent American Heart Association/American College of Cardiology guidelines state that "dobutamine stress echo has substantially higher sensitivity than vasodilator stress echo for detection of coronary artery stenosis" while the European Society of Cardiology guidelines and the European Association of Echocardiography recommendations conclude that "the two tests have very similar applications". Who is right?</p> <p>Aim</p> <p>To evaluate the diagnostic accuracy of dobutamine versus dipyridamole stress echocardiography through an evidence-based approach.</p> <p>Methods</p> <p>From PubMed search, we identified all papers with coronary angiographic verification and head-to-head comparison of dobutamine stress echo (40 mcg/kg/min ± atropine) versus dipyridamole stress echo performed with state-of-the art protocols (either 0.84 mg/kg in 10' plus atropine, or 0.84 mg/kg in 6' without atropine). A total of 5 papers have been found. Pooled weight meta-analysis was performed.</p> <p>Results</p> <p>the 5 analyzed papers recruited 435 patients, 299 with and 136 without angiographically assessed coronary artery disease (quantitatively assessed stenosis > 50%). Dipyridamole and dobutamine showed similar accuracy (87%, 95% confidence intervals, CI, 83–90, vs. 84%, CI, 80–88, p = 0.48), sensitivity (85%, CI 80–89, vs. 86%, CI 78–91, p = 0.81) and specificity (89%, CI 82–94 vs. 86%, CI 75–89, p = 0.15).</p> <p>Conclusion</p> <p>When state-of-the art protocols are considered, dipyridamole and dobutamine stress echo have similar accuracy, specificity and – most importantly – sensitivity for detection of CAD. European recommendations concluding that "<it>dobutamine and vasodilators (at appropriately high doses) are equally potent ischemic stressors for inducing wall motion abnormalities in presence of a critical coronary artery stenosis</it>" are evidence-based.</p

    Erythropoietin in the intensive care unit: beyond treatment of anemia

    Get PDF
    Erythropoietin (EPO) is the major hormone stimulating the production and differentiation of red blood cells. EPO is used widely for treating anemia of critical illness or anemia induced by chemotherapy. EPO at pharmacological doses is used in this setting to raise hemoglobin levels (by preventing the apoptosis of erythroid progenitor cells) and is designed to reduce patient exposure to allogenic blood through transfusions. Stroke, heart failure, and acute kidney injury are a frequently encountered clinical problem. Unfortunately, in the intensive care unit advances in supportive interventions have done little to reduce the high mortality associated with these conditions. Tissue protection with EPO at high, nonpharmacological doses after injury has been found in the brain, heart, and kidney of several animal models. It is now well known that EPO has anti-apoptotic effects in cells other than erythroid progenitor cells, which is considered to be independent of EPOs erythropoietic activities. This review article summarizes what is known in preclinical models of critical illness and discusses why this does not correlate with randomized, controlled clinical trials
    corecore