60,660 research outputs found
Seasonal predictability of the winter NAO from north Atlantic sea surface temperatures
[1] We examine the seasonal predictability of the winter (December-January-February) North Atlantic Oscillation (NAO) from lagged north Atlantic sea surface temperatures (SSTs) for the period 1950/1-2000/1. We identify two lagged modes of SST variability whose principal components (PCs) are correlated significantly to upcoming winter NAO indices. We use linear regression with the PCs as predictors to assess the predictability of the winter NAO from cross-validation over the full period and from replicated real-time forecasts over the recent 15 year period 1986/7-2000/1. The model anticipates, in early November, the upcoming winter NAO - for a range of NAO indices - with a correlation between 0.47 and 0.63 for 1950/ 1-2000/1, and between 0.51 and 0.65 for the replicated real-time forecast period. The model also anticipates the correct NAO sign in 67% to 75% of the last 51 winters and in 80% to 93% of the last 15 winters
Programmable biomaterials for dynamic and responsive drug delivery
Biomaterials are continually being designed that enable new methods for interacting dynamically with cell and tissues, in turn unlocking new capabilities in areas ranging from drug delivery to regenerative medicine. In this review, we explore some of the recent advances being made in regards to programming biomaterials for improved drug delivery, with a focus on cancer and infection. We begin by explaining several of the underlying concepts that are being used to design this new wave of drug delivery vehicles, followed by examining recent materials systems that are able to coordinate the temporal delivery of multiple therapeutics, dynamically respond to changing tissue environments, and reprogram their bioactivity over time
Summer snow extent heralding of the winter North Atlantic Oscillation
[1] Winter climate over the North Atlantic and European sector is modulated by the North Atlantic Oscillation (NAO). We find that the summer extent of snow cover over northern North America and northern Eurasia is linked significantly (p < 0.01) to the upcoming winter NAO state. Summers with high/low snow extent precede winters of low/high NAO index phase. We suggest the linkage arises from the summer snow-associated formation of anomalous longitudinal differences in surface air temperature with the subpolar North Atlantic. Our findings indicate the seasonal predictability of North Atlantic winter climate may be higher and extend to longer leads than thought previously
Recommended from our members
Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry.
This paper provides experimental evidence for the chemical structures of aliphatically substituted and bridged polycyclic aromatic hydrocarbon (PAH) species in gas-physe combustion environments. The identification of these single- and multicore aromatic species, which have been hypothesized to be important in PAH growth and soot nucleation, was made possible through a combination of sampling gaseous constituents from an atmospheric pressure inverse coflow diffusion flame of ethylene and high-resolution tandem mass spectrometry (MS-MS). In these experiments, the flame-sampled components were ionized using a continuous VUV lamp at 10.0 eV and the ions were subsequently fragmented through collisions with Ar atoms in a collision-induced dissociation (CID) process. The resulting fragment ions, which were separated using a reflectron time-of-flight mass spectrometer, were used to extract structural information about the sampled aromatic compounds. The high-resolution mass spectra revealed the presence of alkylated single-core aromatic compounds and the fragment ions that were observed correspond to the loss of saturated and unsaturated units containing up to a total of 6 carbon atoms. Furthermore, the aromatic structures that form the foundational building blocks of the larger PAHs were identified to be smaller single-ring and pericondensed aromatic species with repetitive structural features. For demonstrative purposes, details are provided for the CID of molecular ions at masses 202 and 434. Insights into the role of the aliphatically substituted and bridged aromatics in the reaction network of PAH growth chemistry were obtained from spatially resolved measurements of the flame. The experimental results are consistent with a growth mechanism in which alkylated aromatics are oxidized to form pericondensed ring structures or react and recombine with other aromatics to form larger, potentially three-dimensional, aliphatically bridged multicore aromatic hydrocarbons
DCDIDP: A Distributed, Collaborative, and Data-driven IDP Framework for the Cloud
Recent advances in distributed computing, grid computing, virtualization mechanisms, and utility computing led into Cloud Computing as one of the industry buzz words of our decade. As the popularity of the services provided in the cloud environment grows exponentially, the exploitation of possible vulnerabilities grows with the same pace. Intrusion Detection and Prevention Systems (IDPSs) are one of the most popular tools among the front line fundamental tools to defend the computation and communication infrastructures from the intruders. In this poster, we propose a distributed, collaborative, and data-driven IDP (DCDIDP) framework for cloud computing environments. Both cloud providers and cloud customers will benefit significantly from DCDIDP that dynamically evolves and gradually mobilizes the resources in the cloud as suspicion about attacks increases. Such system will provide homogeneous IDPS for all the cloud providers that collaborate distributively. It will respond to the attacks, by collaborating with other peers and in a distributed manner, as near as possible to attack sources and at different levels of operations (e.g. network, host, VM). We present the DCDIDP framework and explain its components. However, further explanation is part of our ongoing work
Recommended from our members
A methodology for comparing design processes
Engineering Design Centre, University of Cambridge; Design and Innovation, Open UniversityWe gain insights into design processes by recognising similarities to other processes, often in radically different industries. The crucial determinants of what happens are characteristics shared with some other design processes. But there is no way to draw on comparisons beyond one's own experience. We are developing a programme of comparative design research that aims to map the similarities and differences between design processes, and develop a deeper understanding of how and why design is done differently in different industries, and how effective practices can be transferred between industries. In this paper we outline a methodology for creating analyses of design processes that facilitates both cross-process comparisons and the integration of different analytical perspectives on design. The analyst draws on a catalogue of previous design process descriptions for useful concepts, to map processes as a network of participants and activities and the relationships between them, and describe the causal relationships between the properties of the participants, activities and relationships.EPSR
Can the Heinrich ratio be used to predict harm from medication errors?
The purpose of this study was to establish whether, for medication errors, there exists a fixed Heinrich ratio between the number of incidents which did not result in harm, the number that caused minor harm, and the number that caused serious harm. If this were the case then it would be very useful in estimating any changes in harm following an intervention. Serious harm resulting from medication errors is relatively rare, so it can take a great deal of time and resource to detect a significant change. If the Heinrich ratio exists for medication errors, then it would be possible, and far easier, to measure the much more frequent number of incidents that did not result in harm and the extent to which they changed following an intervention; any reduction in harm could be extrapolated from this
Recommended from our members
Natural Variability in Projections of Climate Change Impacts on Fine Particulate Matter Pollution
Variations in meteorology associated with climate change can impact fine particulate matter (PM2.5) pollution by affecting natural emissions, atmospheric chemistry, and pollutant transport. However, substantial discrepancies exist among model-based projections of PM2.5 impacts driven by anthropogenic climate change. Natural variability can significantly contribute to the uncertainty in these estimates. Using a large ensemble of climate and atmospheric chemistry simulations, we evaluate the influence of natural variability on projections of climate change impacts on PM2.5 pollution in the United States. We find that natural variability in simulated PM2.5 can be comparable or larger than reported estimates of anthropogenic-induced climate impacts. Relative to mean concentrations, the variability in projected PM2.5 climate impacts can also exceed that of ozone impacts. Based on our projections, we recommend that analyses aiming to isolate the effect climate change on PM2.5 use 10 years or more of modeling to capture the internal variability in air quality and increase confidence that the anthropogenic-forced effect is differentiated from the noise introduced by natural variability. Projections at a regional scale or under greenhouse gas mitigation scenarios can require additional modeling to attribute impacts to climate change. Adequately considering natural variability can be an important step toward explaining the inconsistencies in estimates of climate-induced impacts on PM2.5. Improved treatment of natural variability through extended modeling lengths or initial condition ensembles can reduce uncertainty in air quality projections and improve assessments of climate policy risks and benefits
Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography
We have deformed basalt from Mount Etna (Italy) in triaxial compression tests under an effective confining pressure representative of conditions under a volcanic edifice (40 MPa), and at a constant strain rate of 5 similar to 10(-6) s(-1). Despite containing a high level of pre-existing microcrack damage, Etna basalt retains a high strength of 475 MPa. We have monitored the complete deformation cycle through contemporaneous measurements of axial strain, pore volume change, compressional wave velocity change and acoustic emission (AE) output. We have been able to follow the complete evolution of the throughgoing shear fault without recourse to any artificial means of slowing the deformation. Locations of AE events over time yields an estimate of the fault propagation velocity of between 2 and 4 mm. s(-1). We also find excellent agreement between AE locations and post-test images from X-ray microtomography scanning that delineates deformation zone architecture
- …