91 research outputs found

    Regional differences in lumbar spinal posture and the influence of low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP.</p> <p>Methods</p> <p>One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks.</p> <p>Results</p> <p>Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007).</p> <p>Conclusion</p> <p>This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load.</p

    Characteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate

    Get PDF
    Mesenchymal stem cells (MSCs) derived from adult tissues are an important candidate for cell-based therapies and regenerative medicine due to their multipotential differentiation capability. MSCs have been identified in many adult tissues but have not reported in the human intervertebral disc cartilage endplate (CEP). The initial purpose of this study was to determine whether MSCs exist in the degenerated human CEP. Next, the morphology, proliferation capacity, cell cycle, cell surface epitope profile and differentiation capacity of these CEP-derived stem cells (CESCs) were compared with bone-marrow MSCs (BM-MSCs). Lastly, whether CESCs are a suitable candidate for BM-MSCs was evaluated. Isolated cells from degenerated human CEP were seeded in an agarose suspension culture system to screen the proliferative cell clusters. Cell clusters were chosen and expanded in vitro and were compared with BM-MSCs derived from the same patient. The morphology, proliferation rate, cell cycle, immunophenotype and stem cell gene expression of the CESCs were similar to BM-MSCs. In addition, the CESCs could be induced into osteoblasts, adipocytes, chondrocytes, and are superior to BM-MSCs in terms of osteogenesis and chondrogenesis. This study is first to demonstrate the presence of stem cells in the human degenerated CEP. These results may improve our understanding of intervertebral disc (IVD) pathophysiology and the degeneration process, and could provide cell candidates for cell-based regenerative medicine and tissue engineering

    Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges

    Get PDF
    Lumbar discectomy is a very effective therapy for neurological decompression in patients suffering from sciatica due to hernia nuclei pulposus. However, high recurrence rates and persisting post-operative low back pain in these patients require serious attention. In the past decade, tissue engineering strategies have been developed mainly targeted to the regeneration of the nucleus pulposus (NP) of the intervertebral disc. Accompanying techniques that deal with the damaged annulus fibrous are now increasingly recognised as mandatory in order to prevent re-herniation to increase the potential of NP repair and to confine NP replacement therapies. In the current review, the requirements, achievements and challenges in this quickly emerging field of research are discussed

    Brazilian Consensus on Photoprotection

    Full text link
    corecore