136 research outputs found
Fruits and Vegetables: A Survey of Ohio Fruit and Vegetable Producers and Market Operators - Summarized Results Apple Businesses Only
Exact date of working paper unknown
Factors Influencing the Currentness of Debt Payments for Ohio Commercial Farmers
Exact date of working paper unknown
On the Influence of ENSO on Sudden Stratospheric Warmings
Using the extended ERA5 reanalysis and three state-of-the-art models, this study explores how El Niño-Southern Oscillation (ENSO) can influence the total frequency, seasonal cycle and preconditioning of sudden stratospheric warmings (SSWs). Reanalysis data shows that in the last seven decades, winters with SSWs were more common than winters without, regardless El Niño (EN) or La Niña (LN) occurrence or the ENSO/SSW definitions. In agreement with previous studies, our models tend to simulate a linear ENSO-SSW relationship, with more SSWs for EN, around mid-winter (January–February) as in reanalysis, and less for LN when compared to neutral conditions. Independently of ENSO, the main tropospheric precursor of SSWs appears to be an anomalous wave-like pattern over Eurasia, but it is dominated by wavenumber 1 (WN1) for EN and shows an enhanced wavenumber 2 (WN2) for LN. The differences in this Eurasian wave pattern, which is largely internally generated, emerge from the distinct configuration of the background, stationary wave pattern induced by ENSO in the North Pacific, favoring a stronger WN1 (WN2) component during EN (LN). Our results suggest that the ENSO-forced signal relies on modulating the seasonal-mean polar vortex strength, becoming weaker and more displaced (stronger and more stable) for EN (LN), while ENSO-unforced wave activity represents the ultimate trigger of SSWs. This supports the view that ENSO and SSWs are distinct sources of variability of the winter atmospheric circulation operating at different time-scales and may reconcile previous findings in this context
On the role of Eurasian autumn snow cover in dynamical seasonal predictions
Seasonal predictions leverage on predictable or persistent components of the Earth system that can modify the state of the atmosphere. The land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of the snow in recent dynamical seasonal forecasts is therefore unclear. Here we assess the role of Autumn Eurasian snow cover in a set of five operational seasonal forecasts with large ensemble size and high resolution and with the help of targeted idealised simulations. Forecast systems reproduce realistically regional changes of the surface energy balance. Retrospective forecasts and idealised sensitivity experiments identify a coherent change of the circulation in the Northern Hemisphere. The main features of the atmospheric response are a wave-train downstream over the Pacific and North America and a signal in the Arctic. The latter does not emerge in reanalysis data but is compatible with a lagged but weak and fast feedback from the snow to the Arctic Oscillation
Suitability of existing Musa morphological descriptors to characterize East African highland ‘matooke’ bananas
Article purchased; Published online: 18 Sept 2017Morphological traits are commonly used for characterizing plant genetic resources. Germplasm characterization should be based on distinctly identifiable, stable and heritable traits that are expressed consistently and are easy to distinguish by the human eye. Characterization and documentation of a representative sample of East African highland bananas (Lujugira–Mutika subgroup) was carried out following an internationally accepted standard protocol for bananas. Eleven cultivars were characterized using an existing set of minimum descriptors (31 qualitative and quantitative traits) with the aim of determining stable descriptors and the ability of these descriptors to distinguish among East African highland banana cultivars. There was variation in stability of these descriptors within cultivars and across the 11 cultivars. Only 10 (32%) out of 31 descriptors studied were stable in the 11 cultivars. However, they had similar scores and therefore are not suitable to distinguish between cultivars within this group. Nonetheless, these 10 descriptors may be useful for distinguishing the East African highland bananas as a group from other groups of bananas. A few descriptors were unique to the cultivar ‘Tereza’ and may be used to distinguish this cultivar from other ‘matooke’ cultivars. None of the quantitative descriptors were stable
El Niño teleconnection to the Euro-Mediterranean late-winter: the role of extratropical Pacific modulation
El Niño Southern Oscillation (ENSO) represents the major driver of interannual climate variability at global scale. Observational and model-based studies have fostered a long-standing debate on the shape and intensity of the ENSO influence over the Euro-Mediterranean sector. Indeed, the detection of this signal is strongly affected by the large internal variability that characterizes the atmospheric circulation in the North Atlantic–European (NAE) region. This study explores if and how the low-frequency variability of North Pacific sea surface temperature (SST) may impact the El Niño-NAE teleconnection in late winter, which consists of a dipolar pattern between middle and high latitudes. A set of idealized atmosphere-only experiments, prescribing different phases of the anomalous SST linked to the Pacific Decadal Oscillation (PDO) superimposed onto an El Niño-like forcing in the tropical Pacific, has been performed in a multi-model framework, in order to assess the potential modulation of the positive ENSO signal. The modelling results suggest, in agreement with observational estimates, that the PDO negative phase (PDO−) may enhance the amplitude of the El Niño-NAE teleconnection, while the dynamics involved appear to be unaltered. On the other hand, the modulating role of the PDO positive phase (PDO+) is not reliable across models. This finding is consistent with the atmospheric response to the PDO itself, which is robust and statistically significant only for PDO−. Its modulation seems to rely on the enhanced meridional SST gradient and the related turbulent heat-flux released along the Kuroshio–Oyashio extension. PDO− weakens the North Pacific jet, whereby favoring more poleward propagation of wave activity, strengthening the El Niño-forced Rossby wave-train. These results imply that there might be conditional predictability for the interannual Euro-Mediterranean climate variability depending on the background state
Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria
Autoantibodies targeting host antigens contribute to autoimmune disorders, frequently occur during and after infections and have been proposed to contribute to malaria-induced anemia. We measured anti-phosphatidylserine (PS) and anti-DNA antibody levels in 382 Ugandan children prospectively recruited in a study of severe malaria (SM). High antibody levels were defined as antibody levels greater than the mean plus 3 standard deviations of community children (CC). We observed increases in median levels of anti-PS and anti-DNA antibodies in children with SM compared to CC (p < 0.0001 for both). Children with severe malarial anemia were more likely to have high anti-PS antibodies than children with cerebral malaria (16.4% vs. 7.4%), p = 0.02. Increases in anti-PS and anti-DNA antibodies were associated with decreased hemoglobin (p < 0.05). A one-unit increase in anti-DNA antibodies was associated with a 2.99 (95% CI, 1.68, 5.31) increase odds of acute kidney injury (AKI) (p < 0.0001). Elevated anti-PS and anti-DNA antibodies were associated with post-discharge mortality (p = 0.031 and p = 0.042, respectively). Children with high anti-PS antibodies were more likely to have multiple hospital readmissions compared to children with normal anti-PS antibody levels (p < 0.05). SM is associated with increased autoantibodies against PS and DNA. Autoantibodies were associated with anemia, AKI, post-discharge mortality, and hospital readmission
Cerebrospinal fluid biomarkers provide evidence for kidney-brain axis involvement in cerebral malaria pathogenesis
Introduction: Cerebral malaria is one of the most severe manifestations of malaria and is a leading cause of acquired neurodisability in African children. Recent studies suggest acute kidney injury (AKI) is a risk factor for brain injury in cerebral malaria. The present study evaluates potential mechanisms of brain injury in cerebral malaria by evaluating changes in cerebrospinal fluid measures of brain injury with respect to severe malaria complications. Specifically, we attempt to delineate mechanisms of injury focusing on blood-brain-barrier integrity and acute metabolic changes that may underlie kidney-brain crosstalk in severe malaria.
Methods: We evaluated 30 cerebrospinal fluid (CSF) markers of inflammation, oxidative stress, and brain injury in 168 Ugandan children aged 18 months to 12 years hospitalized with cerebral malaria. Eligible children were infected with Plasmodium falciparum and had unexplained coma. Acute kidney injury (AKI) on admission was defined using the Kidney Disease: Improving Global Outcomes criteria. We further evaluated blood-brain-barrier integrity and malaria retinopathy, and electrolyte and metabolic complications in serum.
Results: The mean age of children was 3.8 years (SD, 1.9) and 40.5% were female. The prevalence of AKI was 46.3% and multi-organ dysfunction was common with 76.2% of children having at least one organ system affected in addition to coma. AKI and elevated blood urea nitrogen, but not other measures of disease severity (severe coma, seizures, jaundice, acidosis), were associated with increases in CSF markers of impaired blood-brain-barrier function, neuronal injury (neuronspecific enolase, tau), excitatory neurotransmission (kynurenine), as well as altered nitric oxide bioavailability and oxidative stress (p \u3c 0.05 after adjustment for multiple testing). Further evaluation of potential mechanisms suggested that AKI may mediate or be associated with CSF changes through blood-brainbarrier disruption (p = 0.0014), ischemic injury seen by indirect ophthalmoscopy (p \u3c 0.05), altered osmolality (p = 0.0006) and through alterations in the amino acids transported into the brain
Acute kidney injury in hospitalized children with sickle cell anemia
Background: Children with sickle cell anemia (SCA) are at increased risk of acute kidney injury (AKI) that may lead to death or chronic kidney disease. This study evaluated AKI prevalence and risk factors in children with SCA hospitalized with a vaso-occlusive crisis (VOC) in a low-resource setting. Further, we evaluated whether modifcations to the Kidney Disease: Improving Global Outcomes (KDIGO) defnition would infuence clinical outcomes of AKI in children with SCA hospitalized with a VOC.
Methods: We prospectively enrolled 185 children from 2 – 18 years of age with SCA (Hemoglobin SS) hospitalized with a VOC at a tertiary hospital in Uganda. Kidney function was assessed on admission, 24–48 h of hospitalization, and day 7 or discharge. Creatinine was measured enzymatically using an isotype-dilution mass spectrometry traceable method. AKI was defned using the original-KDIGO defnition as≥1.5-fold change in creatinine within seven days or an absolute change of≥0.3 mg/dl within 48 h. The SCA modifed-KDIGO (sKDIGO) defnition excluded children with a 1.5-fold change in creatinine from 0.2 mg/dL to 0.3 mg/dL.
Results: Using KDIGO, 90/185 (48.7%) children had AKI with 61/185 (33.0%) AKI cases present on admission, and 29/124 (23.4%) cases of incident AKI. Overall, 23 children with AKI had a 1.5-fold increase in creatinine from 0.2 mg/ dL to 0.3 m/dL. Using the sKDIGO-defnition, 67/185 (36.2%) children had AKI with 43/185 (23.2%) cases on admission, and 24/142 (16.9%) cases of incident AKI. The sKDIGO defnition, but not the original-KDIGO defnition, was associated with increased mortality (0.9% vs. 7.5%, p=0.024). Using logistic regression, AKI risk factors included age (aOR, 1.10, 95% CI 1.10, 1.20), hypovolemia (aOR, 2.98, 95% CI 1.08, 8.23), tender hepatomegaly (aOR, 2.46, 95% CI 1.05, 5.81), and infection (aOR, 2.63, 95% CI 1.19, 5.81) (p\u3c0.05).
Conclusion: These results demonstrate that AKI is a common complication in children with SCA admitted with VOC. The sKDIGO defnition of AKI in children with SCA was a better predictor of clinical outcomes in children. There is need for promotion of targeted interventions to ensure early identifcation and treatment of AKI in children with SCA
- …