8,343 research outputs found

    Evidence of quantum criticality in the doped Haldane system Y2BaNiO5

    Full text link
    Experimental bulk susceptibility X(T) and magnetization M(H,T) of the S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5 (x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy spectrum of non-interacting open segments describes very well experimental data above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping concentration x.This observation suggests the appearance of a gapless quantum phase due to a broad distribution of effective couplings between the dilution-induced moments.Comment: 4 pages, 3 figure

    Topological Confinement and Superconductivity

    Full text link
    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG), we demonstrate that this mechanism leads to dominant superconducting correlations in a 1D-system.Comment: 4 pages, 4 figure

    Effective Low-Energy Model for f-Electron Delocalization

    Full text link
    We consider a Periodic Anderson Model (PAM) with a momentum-dependent inter-band hybridization that is strongly suppressed near the Fermi level. Under these conditions, we reduce the PAM to an effective low-energy Hamiltonian, HeffH_{\rm eff}, by expanding in the small parameter V0/tV_0/t ( V0V_0 is the maximum inter-band hybridization amplitude and tt is the hopping integral of the broad band). The resulting model consists of a t-J f-band coupled via the Kondo exchange to the electrons in the broad band. HeffH_{\rm eff} allows for studying the f-electron delocalization transition. The result is a doping-induced Mott transition for the f-electron delocalization, which we demonstrate by density-matrix renormalization group (DMRG) calculations

    Orbital disorder induced by charge fluctuations in vanadium spinels

    Full text link
    Motivated by recent experiments on vanadium spinels, AAV2_2O4_4, that show an increasing degree of electronic delocalization for smaller cation sizes, we study the evolution of orbital ordering (OO) between the strong and intermediate-coupling regimes of a multi-orbital Hubbard Hamiltonian. The underlying magnetic ordering of the Mott insulating state leads to a rapid suppression of OO due to enhanced charge fluctuations along ferromagnetic bonds. Orbital double-occupancy is rather low at the transition point indicating that the system is in the crossover region between strong and intermediate-coupling regimes when the orbital degrees of freedom become disordered

    Matéria seca e macronutrientes em mudas de melancia afetados pelo substrato.

    Get PDF
    Neste trabalho avaliaram-se a matéria seca, os teores e coeficientes de utilização biológica (CUB) de macronutrientes em mudas de melancia sob diferentes substratos

    Complementary action of chemical and electrical synapses to perception

    Get PDF
    Acknowledgements This study was possible by partial financial support from the following agencies: Fundação Araucária, EPSRC-EP/I032606/1, CNPq No. 441553/2014-1, CAPES No. 17656-12-5 and Science Without Borders Program— Process Nos. 17656125, 99999.010583/2013-00 and 245377/2012-3.Peer reviewedPostprin
    corecore