7 research outputs found

    Plant Growth-Promoting Microbes from Herbal Vermicompost

    Get PDF
    Overreliance on chemical pesticides and fertilizers has resulted in problems including safety risks, outbreaks of secondary pests normally held in check by natural enemies, insecticide resistance, environmental contamination, and decrease in biodiversity. The increasing costs and negative effects of pesticides and fertilizers necessitate the idea of biological options of crop protection and production. This includes the use of animal manure, crop residues, microbial inoculum, and composts. They provide natural nutrition, reduce the use of inorganic fertilizers, develop biodiversity, increase soil biological activity, maintain soil physical properties, and improve environmental health

    Do Botanical Pesticides Alter the Structure of the Soil Microbial Community?

    No full text
    The effects of synthetic pesticides on the soil microbial community have been thoroughly investigated in the past mostly by culture-dependent methods and only few recent studies have used culture-independent approaches for this purpose. However, it should be noted that most of these studies have been conducted in microcosms where the soil microbial community is exposed to unrealistic concentrations of the pesticides, providing an unrealistic exposure scheme for soil microorganism. On the other hand, little is known regarding the potential impact of botanical pesticides on the soil microbial community. Therefore, a laboratory study and a field study were conducted to investigate the effects of synthetic (metham sodium [MS], sodium tetrathiocarbonate [SoTe], and fosthiazate) and botanical pesticides (azadirachtin, quillaja, and pulverized Melia azedarach fruits [PMF]) on the soil microbial community using phospholipid fatty acids (PLFA) analysis. Principal component analysis (PCA) on the results of the laboratory study indicated that the application of PMF resulted in significant changes in the soil microbial community. This was obvious by the proportional increase in the abundance of fatty acids 18:1 omega 9cis, 18:1 omega 9trans, which are common in gram-negative bacteria and saprotrophic fungi, and 18:2 omega 6,9, which is a fungal indicator. This response was attributed to the release of copious amounts of organic carbon and nutrients in the soil by the PMF. On the other hand, MS inhibited fungi and gram-negative bacteria, while fosthiazate and the botanical pesticides quillaja and azadirachtin did not impose significant changes in the soil microbial community. Similar results were obtained by the field study where application of the fumigants MS and SoTe significantly altered the structure of the soil microbial community with the former having a more prominent effect. Fosthiazate imposed mild changes in the soil microbial community, whereas quillaja and azadirachtin again did not show a significant effect. Overall, botanical pesticides, at their recommended dose, did not alter the structure of the soil microbial community compared to synthetic nonfumigant and fumigant pesticides which induced significant changes

    Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions?

    Full text link
    This study focuses on the biological and morphological development of humus profiles in forested Italian Alpine soils as a function of climate. Humus form description, systematic investigation of microannelid communities and polyphasic biochemical fingerprinting of soil microbial communities (denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid analysis (PLFA)) were performed to compare sites differing in mean annual temperature due to different altitude and exposure. Although the soil biota showed complex responses, several differences in soil biological properties seem to be due to thermal differences. Although soil acidity also determines biological properties, it is not a state factor but rather influenced by them. The thickness of the organic layer and the acidification of the subjacent mineral horizon increased under cooler conditions (north-exposure; higher altitude), whereas the thickness of the A horizon inversely decreased. Species richness of microannelid assemblages was higher under warmer conditions (south-exposure; lower altitude) and the vertical distribution of microannelids shifted along the gradient to lower temperatures from predominant occurrence in the mineral soil to exclusive occurrence in the organic layer. Microbial biomass (total PLFA) was higher at the cooler sites; the prevalence of Gram-negative bacteria could be ascribed to their better adaptation to lower temperature, pH and nutrient contents. The δ13C signatures of the PLFA markers suggested a lower decomposition rate at the cooler sites, resulting in a lower respiratory loss and an accumulation of weakly decomposed organic material. DGGE data supported the PLFA results. Both parameters reflected the expected thermal sequence. This multidisciplinary case study provided indications of an association of climate, mesofauna and microbiota using the humus form as an overall link. More data are however needed and further investigations are encouraged

    Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)

    Get PDF

    Diversity of Plant Associated Actinobacteria

    No full text
    corecore