242 research outputs found

    Isolation and characterization of microsatellite loci from two inbreeding bark beetle species (Coccotrypes)

    Get PDF
    We developed 14 microsatellite markers in Coccotrypes carpophagus and 14 in C. dactyliperda. These loci will be used for studying genetic structure and the level of inbreeding in populations in the Canary Islands and Madeira. As a result of long-term inbreeding, genetic variability is relatively low in these bark beetle species. We found one to five alleles per locus in 29 C. carpophagus and 41 C. dactyliperda from various localities. Eleven of the markers developed for C. carpophagus amplified in C. dactyliperda and seven of the markers developed for C. dactyliperda amplified in C. carpophagus

    Isolation of polymorphic microsatellites in the stemless thistle (Cirsium acaule) and their utility in other Cirsium species

    Get PDF
    The genus Cirsium includes species with both widespread and restricted geographical distributions, several of which are serious weeds. Nine polymorphic microsatellite loci were isolated from the stemless thistle Cirsium acaule. Eight were polymorphic in C. acaule, six in C. arvense and seven in C. heterophyllum. One locus monomorphic in C. acaule showed polymorphism in C. heterophyllum. The mean number of alleles per locus was 4.1 in C. acaule, 6.2 in C. arvense and 2.9 in C. heterophyllum. These nine loci were also amplified in C. eriophorum and C. vulgare, suggesting that these markers may be of use throughout the genus

    Detection of Ligation Products of DNA Linkers with 5′-OH Ends by Denaturing PAGE Silver Stain

    Get PDF
    To explore if DNA linkers with 5′-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5–1% of linkers A–B and E–F, and 0.13–0.5% of linkers C–D could be joined by T4 DNA ligases. About 0.25–0.77% of linkers A–B and E–F, and 0.06–0.39% of linkers C–D could be joined by E. coli DNA ligases. A 1-base deletion (-G) and a 5-base deletion (-GGAGC) could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025–0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5′-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i) about 0.025–0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3′-OH ends of other linkers; and (ii) the linkers could delete one or more nucleotide(s) at their 5′-ends and thereby generated some 5′-phosphate ends, and then these 5′-phosphate ends could be joined to the 3′-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5′-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK

    The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no biological or epidemiological data on the association between <it>NOS3 </it>promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of <it>NOS3 </it>gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage.</p> <p>Methods</p> <p>This study aimed evaluating the <it>NOS3 </it>promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with <it>NOS3 </it>expression levels through semi-quantitative RT-PCR, and with <it>PCA</it>3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH.</p> <p>Results</p> <p>Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the <it>NOS3 </it>gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A). <it>NOS3 </it>gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in <it>NOS3 </it>levels favored by the incorporation of each C allele. <it>NOS3 </it>levels higher than 80% of the constitutive gene expression level (<it>B2M</it>) presented a 4-fold increase in PCa occurrence.</p> <p>Conclusion</p> <p>The -786T>C polymorphism was the most important promoter alteration of the <it>NOS3 </it>gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of <it>NOS3 </it>transcripts. The <it>NOS3 </it>transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the <it>PCA3 </it>marker for molecular staging of the prostate cancer.</p

    Effect of polymorphisms in the Slc11a1 coding region on resistance to brucellosis by macrophages in vitro and after challenge in two Bos breeds (Blanco Orejinegro and Zebu)

    Get PDF
    The resistance/susceptibility of selected cattle breeds to brucellosis was evaluated in an F1 population generated by crossing animals classified as resistant (R) and susceptible (S) (R x R, R x S, S x R, S x S) based on challenges in vitro and in vivo. The association between single nucleotide polymorphisms identified in the coding region of the Slc11a1 gene and resistance/susceptibility was estimated. The trait resistance or susceptibility to brucellosis, evaluated by a challenge in vitro, showed a high heritable component in terms of additive genetic variance (h2 = 0.54 ± 0.11). In addition, there was a significant association (p < 0.05) between the control of bacterial survival and two polymorphisms (a 3'UTR and SNP4 located in exon 10). The antibody response of animals classified as resistant to infection by Brucella abortus differed significantly (p < 0.05) from that of susceptible animals. However, there was no significant association between single nucleotide polymorphisms located in the Slc11a1 gene and the antibody response stimulated by a challenge in vivo

    Alterations of tumor suppressor gene p16(INK4a )in pancreatic ductal carcinoma

    Get PDF
    BACKGROUND: Cell cycle inhibitor and tumor suppressor gene p16 / MTS-1 has been reported to be altered in a variety of human tumors. The purpose of the study was to evaluate primary pancreatic ductal adenocarcinomas for potentially inactivating p16 alterations. METHODS: We investigated the status of p16 gene by polymerase chain reaction (PCR), nonradioisotopic single strand conformation polymorphism (SSCP), DNA sequencing and hypermethylation analysis in 25 primary resected ductal adenocarcinomas. In addition, we investigated p16 protein expression in these cases by immunohistochemistry (IHC) using a monoclonal antibody clone (MS-887-PO). RESULTS: Out of the 25 samples analyzed and compared to normal pancreatic control tissues, the overall frequency of p16 alterations was 80% (20/25). Aberrant promoter methylation was the most common mechanism of gene inactivation present in 52% (13/25) cases, followed by coding sequence mutations in 16% (4/25) cases and presumably homozygous deletion in 12% (3/25) cases. These genetic alterations correlated well with p16 protein expression as complete loss of p16 protein was found in 18 of 25 tumors (72%). CONCLUSION: These findings confirm that loss of p16 function could be involved in pancreatic cancer and may explain at least in part the aggressive behaviour of this tumor type

    Association of PPARγ2 polymorphisms with carcass and meat quality traits in a Pietrain x Jinhua F2 population

    Get PDF
    The PPARγ2 gene is a key regulator of both proliferation and preadipocyte differentiation in mammals. Herein its genotype and allele frequencies were analyzed using PCR-SSCP in eight pig breeds (N = 416). Two kinds of polymorphisms of the PPARγ2 gene were detected, including a previously reported shift SNP A177G (Met59Val) in exon 1 and a novel silent mutation G876A in exon 5. The results revealed that European pig breeds carry a higher allele A frequency at the A177G locus and a fixed GG genotype at the G876A locus. Allele A at the G876A locus was only found in Jinhua pigs. The association between haplotype (A177G/G876A) and carcass and meat quality traits was analyzed in a Pietrain x Jinhua F2 population (N = 248). The PPARγ2 gene was found to be significantly associated with backfat thickness at the shoulder (p < 0.05), 6–7th ribs (p < 0.01), last rib (p < 0.01), gluteus medius (p <0.05) and ham weight (p < 0.01). Significant effects of different haplotypes on ham weight and backfat thickness at the 6–7th ribs, last rib, and gluteus medius were also observed

    A SNP and SSR Based Genetic Map of Asparagus Bean (Vigna. unguiculata ssp. sesquipedialis) and Comparison with the Broader Species

    Get PDF
    Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as ‘long beans’ or ‘asparagus beans’. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level
    corecore