10,167 research outputs found
Time-Reversal Symmetry Breaking and Decoherence in Chaotic Dirac Billiards
In this work, we perform a statistical study on Dirac Billiards in the
extreme quantum limit (a single open channel on the leads). Our numerical
analysis uses a large ensemble of random matrices and demonstrates the
preponderant role of dephasing mechanisms in such chaotic billiards. Physical
implementations of these billiards range from quantum dots of graphene to
topological insulators structures. We show, in particular, that the role of
finite crossover fields between the universal symmetries quickly leaves the
conductance to the asymptotic limit of unitary ensembles. Furthermore, we show
that the dephasing mechanisms strikingly lead Dirac billiards from the extreme
quantum regime to the semiclassical Gaussian regime
Decision Making for Inconsistent Expert Judgments Using Negative Probabilities
In this paper we provide a simple random-variable example of inconsistent
information, and analyze it using three different approaches: Bayesian,
quantum-like, and negative probabilities. We then show that, at least for this
particular example, both the Bayesian and the quantum-like approaches have less
normative power than the negative probabilities one.Comment: 14 pages, revised version to appear in the Proceedings of the QI2013
(Quantum Interactions) conferenc
SOPHIE velocimetry of Kepler transit candidates IX. KOI-415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun
We report the discovery of a long-period brown-dwarf transiting companion of
the solar-type star KOI-415. The transits were detected by the Kepler space
telescope. We conducted Doppler measurements using the SOPHIE spectrograph at
the Observatoire de Haute-Provence. The photometric and spectroscopic signals
allow us to characterize a 62.14+-2.69 Mjup, brown-dwarf companion of an
evolved 0.94+-0.06 Msun star in a highly eccentric orbit of P =
166.78805+-0.00022 days and e = 0.698+-0.002. The radius of KOI-415 b is 0.79
(-0.07,+0.12) Rjup, a value that is compatible with theoretical predictions for
a 10 Gyr, low-metallicity and non-irradiated object.Comment: accepted in A&A Letter
SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system
As part of our follow-up campaign of Kepler planets, we observed Kepler-117
with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This
F8-type star hosts two transiting planets in non-resonant orbits. The planets,
Kepler-117 b and c, have orbital periods and days,
and show transit-timing variations (TTVs) of several minutes. We performed a
combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities,
and stellar parameters to constrain the characteristics of the system. We
included the fit of the TTVs in the MCMC by modeling them with dynamical
simulations. In this way, consistent posterior distributions were drawn for the
system parameters. According to our analysis, planets b and c have notably
different masses ( and M) and low
orbital eccentricities ( and ). The
uncertainties on the derived parameters are strongly reduced if the fit of the
TTVs is included in the combined MCMC. The TTVs allow measuring the mass of
planet b, although its radial velocity amplitude is poorly constrained.
Finally, we checked that the best solution is dynamically stable.Comment: 16 pages, of whom 5 of online material.12 figures, of whom 2 in the
online material. 7 tables, of whom 4 in the online material. Published in A&
Intense CIII] 1907,1909 emission from a strong Lyman continuum emitting galaxy
We have obtained the first complete ultraviolet (UV) spectrum of a strong
Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity,
star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46%
discovered recently. The Space Telescope Imaging Spectrograph spectrum shows
strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations
show that strong LyC emitters can have UV emission lines with a high equivalent
width (e.g. EW(CIII]) rest-frame), although their equivalent
widths should be reduced due to the loss of ionizing photons. The intrinsic
ionizing photon production efficiency of J1154+2443 is high, erg Hz, comparable to that of other recently discovered
LyC emitters. Combining our measurements and earlier
determinations from the literature, we find a trend of increasing with increasing CIII] 1909 equivalent width, which can be understood by
a combination of decreasing stellar population age and metallicity. Simple
ionization and density-bounded photoionization models can explain the main
observational features including the UV spectrum of J1154+2443.Comment: 5 pages, 4 figures. Accepted for publication in A&A Letter
Constraining planet structure and composition from stellar chemistry: trends in different stellar populations
The chemical composition of stars that have orbiting planets provides
important clues about the frequency, architecture, and composition of exoplanet
systems. We explore the possibility that stars from different galactic
populations that have different intrinsic abundance ratios may produce planets
with a different overall composition. We compiled abundances for Fe, O, C, Mg,
and Si in a large sample of solar neighbourhood stars that belong to different
galactic populations. We then used a simple stoichiometric model to predict the
expected iron-to-silicate mass fraction and water mass fraction of the planet
building blocks, as well as the summed mass percentage of all heavy elements in
the disc. Assuming that overall the chemical composition of the planet building
blocks will be reflected in the composition of the formed planets, we show that
according to our model, discs around stars from different galactic populations,
as well as around stars from different regions in the Galaxy, are expected to
form rocky planets with significantly different iron-to-silicate mass
fractions. The available water mass fraction also changes significantly from
one galactic population to another. The results may be used to set constraints
for models of planet formation and chemical composition. Furthermore, the
results may have impact on our understanding of the frequency of planets in the
Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic
Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b
The characterization of four new transiting extrasolar planets is presented
here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of
3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the
low-mass range of known transiting, giant planets. KOI-192b has a similar mass
(0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a
domain where only a few planets are known. KOI-830b, finally, with a mass of
1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets
have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no
significant eccentricity in any of the systems, while the accuracy of our data
does not rule out possible moderate eccentricities. The four objects were first
identified by the Kepler Team as promising candidates from the photometry of
the Kepler satellite. We establish here their planetary nature thanks to the
radial velocity follow-up we secured with the HARPS-N spectrograph at the
Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to
fully characterize the four planetary systems. These new objects increase the
number of well-characterized exoplanets for statistics, and provide new targets
for individual follow-up studies. The pre-screening we performed with the
SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study
also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet
but is instead a false positive.Comment: 13 pages, 4 figures, 6 tables, final version accepted for publication
in A&
SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter
We confirm the planetary nature of Kepler-412b, listed as planet candidate
KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program
of Kepler-released planet candidates, which is on going with the SOPHIE
spectrograph. We performed a complete analysis of the system by combining the
Kepler observations from Q1 to Q15, to ground-based spectroscopic observations
that allowed us to derive radial velocity measurements, together with the host
star parameters and properties. We also analyzed the light curve to derive the
star's rotation period and the phase function of the planet, including the
secondary eclipse. We found the planet has a mass of 0.939 0.085
M and a radius of 1.325 0.043 R which makes it a member
of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The
system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar
activity as observed in the Kepler light curve and the rotation of the star of
17.2 1.6 days. From the detected secondary, we derived the day side
temperature as a function of the geometric albedo and estimated the geometrical
albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux
corresponds to a night side brightness temperature of 2154 83 K, much
greater than what is expected for a planet with homogeneous heat
redistribution. From the comparison to star and planet evolution models, we
found that dissipation should operate in the deep interior of the planet. This
modeling also shows that despite its inflated radius, the planet presents a
noticeable amount of heavy elements, which accounts for a mass fraction of 0.11
0.04.Comment: 11 pages, 9 figure
- …