12 research outputs found

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2_{2}CuO4.11_{4.11} and La1.88_{1.88}Sr0.12_{0.12}CuO4_{4}

    Full text link
    This paper reports muon spin relaxation (MuSR) measurements of two single crystals of the title high-Tc cuprate systems where static incommensurate magnetism and superconductivity coexist. By zero-field MuSR measurements and subsequent analyses with simulations, we show that (1) the maximum ordered Cu moment size (0.36 Bohr magneton) and local spin structure are identical to those in prototypical stripe spin systems with the 1/8 hole concentration; (2) the static magnetism is confined to less than a half of the volume of the sample, and (3) regions with static magnetism form nano-scale islands with the size comparable to the in-plane superconducting coherence length. By transverse-field MuSR measurements, we show that Tc of these systems is related to the superfluid density, in the same way as observed in cuprate systems without static magnetism. We discuss a heuristic model involving percolation of these nanoscale islands with static magnetism as a possible picture to reconcile heterogeneity found by the present MuSR study and long-range spin correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail: [email protected]

    Using μSR to investigate the vortex lattice in high-temperature superconductors

    No full text
    We review some of the properties of the vortex lattice in type II superconductors and the use of muon spin rotation (ÎĽSR) to investigate high temperature superconducting oxides. As a microscopic probe of the field distribution inside the bulk of materials, ÎĽSR is shown to be a powerful tool with which to study the magnetic properties of superconductors. We also discuss how understanding the complex phenomenology of the vortex lattice in these materials is necessary in order to correctly determine fundamental parameters of the superconducting stat
    corecore