13,554 research outputs found

    Kinematics of a Spacetime with an Infinite Cosmological Constant

    Full text link
    A solution of the sourceless Einstein's equation with an infinite value for the cosmological constant \Lambda is discussed by using Inonu-Wigner contractions of the de Sitter groups and spaces. When \Lambda --> infinity, spacetime becomes a four-dimensional cone, dual to Minkowski space by a spacetime inversion. This inversion relates the four-cone vertex to the infinity of Minkowski space, and the four-cone infinity to the Minkowski light-cone. The non-relativistic limit c --> infinity is further considered, the kinematical group in this case being a modified Galilei group in which the space and time translations are replaced by the non-relativistic limits of the corresponding proper conformal transformations. This group presents the same abstract Lie algebra as the Galilei group and can be named the conformal Galilei group. The results may be of interest to the early Universe Cosmology.Comment: RevTex, 7 pages, no figures. Presentation changes, including a new Title. Version to appear in Found. Phys. Let

    Cosmic microwave background constraints on the epoch of reionization

    Full text link
    We use a compilation of cosmic microwave anisotropy data to constrain the epoch of reionization in the Universe, as a function of cosmological parameters. We consider spatially-flat cosmologies, varying the matter density Ω0\Omega_0 (the flatness being restored by a cosmological constant), the Hubble parameter hh and the spectral index nn of the primordial power spectrum. Our results are quoted both in terms of the maximum permitted optical depth to the last-scattering surface, and in terms of the highest allowed reionization redshift assuming instantaneous reionization. For critical-density models, significantly-tilted power spectra are excluded as they cannot fit the current data for any amount of reionization, and even scale-invariant models must have an optical depth to last scattering of below 0.3. For the currently-favoured low-density model with Ω0=0.3\Omega_0 = 0.3 and a cosmological constant, the earliest reionization permitted to occur is at around redshift 35, which roughly coincides with the highest estimate in the literature. We provide general fitting functions for the maximum permitted optical depth, as a function of cosmological parameters. We do not consider the inclusion of tensor perturbations, but if present they would strengthen the upper limits we quote.Comment: 9 pages LaTeX file with ten figures incorporated (uses mn.sty and epsf). Corrects some equation typos, superseding published versio
    • …
    corecore