6,807 research outputs found
Two novel evolutionary formulations of the graph coloring problem
We introduce two novel evolutionary formulations of the problem of coloring
the nodes of a graph. The first formulation is based on the relationship that
exists between a graph's chromatic number and its acyclic orientations. It
views such orientations as individuals and evolves them with the aid of
evolutionary operators that are very heavily based on the structure of the
graph and its acyclic orientations. The second formulation, unlike the first
one, does not tackle one graph at a time, but rather aims at evolving a
`program' to color all graphs belonging to a class whose members all have the
same number of nodes and other common attributes. The heuristics that result
from these formulations have been tested on some of the Second DIMACS
Implementation Challenge benchmark graphs, and have been found to be
competitive when compared to the several other heuristics that have also been
tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio
Modeling the input history of programs for improved instruction-memory performance
When a program is loaded into memory for execution, the relative position of
its basic blocks is crucial, since loading basic blocks that are unlikely to be
executed first places them high in the instruction-memory hierarchy only to be
dislodged as the execution goes on. In this paper we study the use of Bayesian
networks as models of the input history of a program. The main point is the
creation of a probabilistic model that persists as the program is run on
different inputs and at each new input refines its own parameters in order to
reflect the program's input history more accurately. As the model is thus
tuned, it causes basic blocks to be reordered so that, upon arrival of the next
input for execution, loading the basic blocks into memory automatically takes
into account the input history of the program. We report on extensive
experiments, whose results demonstrate the efficacy of the overall approach in
progressively lowering the execution times of a program on identical inputs
placed randomly in a sequence of varied inputs. We provide results on selected
SPEC CINT2000 programs and also evaluate our approach as compared to the gcc
level-3 optimization and to Pettis-Hansen reordering
Mass Generation from Lie Algebra Extensions
Applied to the electroweak interactions, the theory of Lie algebra extensions
suggests a mechanism by which the boson masses are generated without resource
to spontaneous symmetry breaking. It starts from a gauge theory without any
additional scalar field. All the couplings predicted by the Weinberg-Salam
theory are present, and a few others which are nevertheless consistent within
the model.Comment: 11 pages; revtex; title and PACS have been changed; comments included
in the manuscrip
Crossover of thermal to shot noise in chaotic cavities
We study the crossover between thermal and shot-noise power in a chaotic
quantum dot in the presence of non-ideal contacts at finite temperature. The
result explicitly demonstrates that the temperature affect the
suppression-amplification effect present in the main quantum noise. In
particular, the weak localization contribution to the noise has an anomalous
thermal behavior when one let the barriers vary, indicating the presence of a
critical point related to specific value of the tunneling barriers. We also
show how to get to the opaque limit of the quantum dot at finite temperature.Comment: 6 pages, 5 figures. To be published in Europhysics Letter
Gravitation and Duality Symmetry
By generalizing the Hodge dual operator to the case of soldered bundles, and
working in the context of the teleparallel equivalent of general relativity, an
analysis of the duality symmetry in gravitation is performed. Although the
basic conclusion is that, at least in the general case, gravitation is not dual
symmetric, there is a particular theory in which this symmetry shows up. It is
a self dual (or anti-self dual) teleparallel gravity in which, due to the fact
that it does not contribute to the interaction of fermions with gravitation,
the purely tensor part of torsion is assumed to vanish. The ensuing fermionic
gravitational interaction is found to be chiral. Since duality is intimately
related to renormalizability, this theory may eventually be more amenable to
renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes,
references added. Accepted for publication in Int. J. Mod. Phys.
Detecção e erradicação de videiras com sintomas do cancro bacteriano no Estado do Paraná.
Suplemento. Edição dos Resumos do 44 Congresso Brasileiro de Fitopatologia, Bento Gonçalves, ago. 2011
Limite de detecção de Xanthomonas campestris pv. viticola por nested-PCR em frutos assintomáticos de videiras.
Suplemento. Edição dos Resumos do 44 Congresso Brasileiro de Fitopatologia, Bento Gonçalves, ago. 2011
- …