12,009 research outputs found

    Contractile stresses in cohesive cell layers on finite-thickness substrates

    Full text link
    Using a minimal model of cells or cohesive cell layers as continuum active elastic media, we examine the effect of substrate thickness and stiffness on traction forces exerted by strongly adhering cells. We obtain a simple expression for the length scale controlling the spatial variation of stresses in terms of cell and substrate parameters that describes the crossover between the thin and thick substrate limits. Our model is an important step towards a unified theoretical description of the dependence of traction forces on cell or colony size, acto-myosin contractility, substrate depth and stiffness, and strength of focal adhesions, and makes experimentally testable predictions.Comment: 5 pages, 3 figure

    Factors Influencing Predation on Juvenile Ungulates and Natural Selection Implications

    Get PDF
    Juvenile ungulates are generally more vulnerable to predation than are adult ungulates other than senescent individuals, not only because of their relative youth, fragility, and inexperience, but also because of congenital factors. Linnell et al.’s (Wildl. Biol. 1: 209-223) extensive review of predation on juvenile ungulates concluded that research was needed to determine the predisposition of these juveniles to predation. Since then, various characteristics that potentially predispose juvenile ungulates have emerged including blood characteristics, morphometric and other condition factors, and other factors such as birth period, the mother’s experience, and spatial and habitat aspects. To the extent that any of the physical or behavioral traits possessed by juvenile ungulates have a genetic or heritable and partly independent epigenetic component that predisposes them to predation, predators may play an important role in their natural selection. We review the possible influence of these characteristics on predisposing juvenile ungulates to predation and discuss natural selection implications and potential selection mechanisms. Although juvenile ungulates as a class are likely more vulnerable to predation than all but senescent adults, our review presents studies indicating that juveniles with certain tendencies or traits are killed more often than others. This finding suggests that successful predation on juveniles is more selective than is often assumed. Because we are unable to control for (or in some cases even measure) the myriad of other possible vulnerabilities such as differences in sensory abilities, intelligence, hiding abilities, tendency to travel, etc., finding selective predation based on the relatively few differences we can measure is noteworthy and points to the significant role that predation on juveniles has in the natural selection of ungulates. Future research should compare characteristics, especially those known to influence survival, between animals killed by predators versus those killed by other sources as well as survivors versus non-survivors to better understand predation’s role in natural selection

    Quasiperiodic spin-orbit motion and spin tunes in storage rings

    Get PDF
    We present an in-depth analysis of the concept of spin precession frequency for integrable orbital motion in storage rings. Spin motion on the periodic closed orbit of a storage ring can be analyzed in terms of the Floquet theorem for equations of motion with periodic parameters and a spin precession frequency emerges in a Floquet exponent as an additional frequency of the system. To define a spin precession frequency on nonperiodic synchro-betatron orbits we exploit the important concept of quasiperiodicity. This allows a generalization of the Floquet theorem so that a spin precession frequency can be defined in this case too. This frequency appears in a Floquet-like exponent as an additional frequency in the system in analogy with the case of motion on the closed orbit. These circumstances lead naturally to the definition of the uniform precession rate and a definition of spin tune. A spin tune is a uniform precession rate obtained when certain conditions are fulfilled. Having defined spin tune we define spin-orbit resonance on synchro--betatron orbits and examine its consequences. We give conditions for the existence of uniform precession rates and spin tunes (e.g. where small divisors are controlled by applying a Diophantine condition) and illustrate the various aspects of our description with several examples. The formalism also suggests the use of spectral analysis to ``measure'' spin tune during computer simulations of spin motion on synchro-betatron orbits.Comment: 62 pages, 1 figure. A slight extension of the published versio

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres
    corecore