55 research outputs found

    Phenolic Compounds in Red Oak and Sugar Maple Leaves Have Prooxidant Activities in the Midgut Fluids of Malacosoma disstria and Orgyia leucostigma Caterpillars

    Full text link
    Phenolic compounds are generally believed to be key components of the oxidative defenses of plants against pathogens and herbivores. However, phenolic oxidation in the gut fluids of insect herbivores has rarely been demonstrated, and some phenolics could act as antioxidants rather than prooxidants. We compared the overall activities of the phenolic compounds in red oak ( Quercus rubra ) and sugar maple ( Acer saccharum ) leaves in the midgut fluids of two caterpillar species, Malacosoma disstria (phenolic-sensitive) and Orgyia leucostigma (phenolic-tolerant). Three hypotheses were examined: (1) ingested sugar maple leaves produce higher levels of semiquinone radicals (from phenolic oxidation) in caterpillar midgut fluids than do red oak leaves; (2) O. leucostigma maintains lower levels of phenolic oxidation in its midgut fluids than does M. disstria ; and (3) phenolic compounds in tree leaves have overall prooxidant activities in the midgut fluids of caterpillars. Sugar maple leaves had significantly lower ascorbate:phenolic ratios than did red oak leaves, suggesting that phenolics in maple would oxidize more readily than those in oak. As expected, semiquinone radicals were at higher steady-state levels in the midgut fluids of both caterpillar species when they fed on sugar maple than on red oak, consistent with the first hypothesis. Higher semiquinone radical levels were also found in M. disstria than in O. leucostigma , consistent with the second hypothesis. Finally, semiquinone radical formation was positively associated with two markers of oxidation (protein carbonyls and total peroxides). These results suggest that the complex mixtures of phenolics in red oak and sugar maple leaves have overall prooxidant activities in the midgut fluids of M. disstria and O. leucostigma caterpillars. We conclude that the oxidative defenses of trees vary substantially between species, with those in sugar maple leaves being especially active, even in phenolic-tolerant herbivore species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44901/1/10886_2005_Article_4242.pd

    Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tannins

    Full text link
    We examined several of the mechanisms that have been reported to enable polyphagous grasshoppers (Orthoptera: Acrididae) to tolerate ingested hydrolyzable tannins: hydrolysis, adsorption on the peritrophic envelope, and peritrophic envelope impermeability. None of these mechanisms explain the tolerance of Melanoplus sanguinipes to ingested tannic acid. In this species, tannin hydrolysis was 12–47% complete, adsorption accounted for less than 1% of the tannic acid contained in the midgut, and the peritrophic envelope was permeated by several gallotannins. The foregut is the main site for the chemical transformation of tannic acid in this species. In Phoetaliotes nebrascensis , hydrolysis was more extensive (82% complete), but the peritrophic envelope was readily permeated by two gallotannins. Oxidizing redox conditions were found in the guts of both species, and ingested tannins were oxidized in M. sanguinipes . We hypothesize that the tolerance of some polyphagous grasshoppers to ingested hydrolyzable tannins may be the consequence of their ability to tolerate the reactive oxygen species generated by polyphenol oxidation, whereas others may rely on rapid and extensive hydrolysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44891/1/10886_2005_Article_BF02028511.pd
    • …
    corecore