672 research outputs found
Negative ion Time Projection Chamber operation with SF at nearly atmospheric pressure
We present measurements of drift velocities and mobilities of some innovative
negative ion gas mixtures at nearly atmospheric pressure based on SF as
electronegative capture agent and of pure SF at various pressures,
performed with the NITEC detector. NITEC is a Time Projection Chamber with 5 cm
drift distance readout by a GEMPix, a triple thin GEMs coupled to a
Quad-Timepix chip, directly sensitive to the deposited charge on each of the 55
55 m pixel. Our results contribute to expanding the knowledge
on the innovative use of SF as negative ion gas and extend to triple thin
GEMs the possibility of negative ion operation for the first time. Above all,
our findings show the feasibility of negative ion operation with
He:CF:SF at 610 Torr, opening extremely interesting possibility for
next generation directional Dark Matter detectors at 1 bar
Investigating The Physics Case of Running a B-Factory at the Y(5S) Resonance
We discuss the physics case of a high luminosity B-Factory running at the
Y(5S) resonance. We show that the coherence of the B meson pairs is preserved
at this resonance, and that Bs can be well distinguished from Bd and charged B
mesons. These facts allow to cover the physics program of a traditional
B-Factory and, at the same time, to perform complementary measurements which
are not accessible at the Y(4S). In particular we show how, despite the
experimental limitations in performing time-dependent measurements of Bs
decays, the same experimental information can be extracted, in several cases,
from the determination of time-integrated observables. In addition, a few
examples of the potentiality in measuring rare Bs decays are given. Finally, we
discuss how the study of Bs meson will improve the constraints on New Physics
parameters in the Bs sector, in the context of the generalized Unitarity
Triangle analysis.Comment: 47 pages, 22 figure
Carbon nanotubes as target for directional detection of light WIMP
In this paper I will briefly introduce the idea of using Carbon Nanotubes
(CNT) as target for the detection of low mass WIMPs with the additional
information of directionality. I will also present the experimental efforts of
developing a Time Projection Chamber with a CNT target inside and the results
of a test beam at the Beam Test Facility of INFN-LNF.Comment: 3 figures, IFAE2017 poster session proceeding
Performance of Optically Readout GEM-based TPC with a 55Fe source
Optical readout of large Time Projection Chambers (TPCs) with multiple Gas
Electron Multipliers (GEMs) amplification stages has shown to provide very
interesting performances for high energy particle tracking. Proposed
applications for low-energy and rare event studies, such as Dark Matter search,
ask for demanding performance in the keV energy range. The performance of such
a readout was studied in details as a function of the electric field
configuration and GEM gain by using a Fe source within a 7 litre
sensitive volume detector developed as a part of the R\&D for the CYGNUS
project. Results reported in this paper show that the low noise level of the
sensor allows to operate with a 2~keV threshold while keeping a rate of
fake-events lesser than 10 per year. In this configuration, a detection
efficiency well above 95\% along with an energy resolution () of 18\%
is obtained for the 5.9 keV photons, demonstrating the very promising
capabilities of this technique
Single-hit resolution measurement with MEG II drift chamber prototypes
Drift chambers operated with helium-based gas mixtures represent a common
solution for tracking charged particles keeping the material budget in the
sensitive volume to a minimum. The drawback of this solution is the worsening
of the spatial resolution due to primary ionisation fluctuations, which is a
limiting factor for high granularity drift chambers like the MEG II tracker. We
report on the measurements performed on three different prototypes of the MEG
II drift chamber aimed at determining the achievable single-hit resolution. The
prototypes were operated with helium/isobutane gas mixtures and exposed to
cosmic rays, electron beams and radioactive sources. Direct measurements of the
single hit resolution performed with an external tracker returned a value of
110 m, consistent with the values obtained with indirect measurements
performed with the other prototypes.Comment: 18 pages, 18 figure
A 1 m Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment
The aim of the CYGNO project is the construction and operation of a 1~m
gas TPC for directional dark matter searches and coherent neutrino scattering
measurements, as a prototype toward the 100-1000~m (0.15-1.5 tons) CYGNUS
network of underground experiments. In such a TPC, electrons produced by
dark-matter- or neutrino-induced nuclear recoils will drift toward and will be
multiplied by a three-layer GEM structure, and the light produced in the
avalanche processes will be readout by a sCMOS camera, providing a 2D image of
the event with a resolution of a few hundred micrometers. Photomultipliers will
also provide a simultaneous fast readout of the time profile of the light
production, giving information about the third coordinate and hence allowing a
3D reconstruction of the event, from which the direction of the nuclear recoil
and consequently the direction of the incoming particle can be inferred. Such a
detailed reconstruction of the event topology will also allow a pure and
efficient signal to background discrimination. These two features are the key
to reach and overcome the solar neutrino background that will ultimately limit
non-directional dark matter searches.Comment: 5 page, 7 figures, contribution to the Conference Records of 2018
IEEE NSS/MI
MPGD Optical Read Out for Directional Dark Matter Search
The Time Projection method is an ideal candidate to track low energy release particles. Large volumes can be readout by means of a moderate number of channels providing a complete 3D reconstruction of the charged tracks within the sensitive volume. It allows the measurement not only of the total released energy but also of the energy release density along the tracks that can be very useful for particle identification and to solve the head-tail ambiguity of the tracks. Moreover, gas represents a very interesting target to study Dark Matter interactions. In gas, nuclear recoils can travel enough to give rise to tracks long enough to be acquired and reconstructed
EEG Fractal Analysis Reflects Brain Impairment after Stroke
Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways
Heritability of the dimensions, compliance and distensibility of the human internal jugular vein wall
AIMS: The elasticity of the internal jugular vein (IJV) is a major determinant of cerebral venous drainage and right atrium venous return. However, the level of genetic determination of IJV dimensions, compliance and distensibility has not been studied yet. METHODS: 170 adult Caucasian twins (43 monozygotic [MZ] and 42 dizygotic [DZ] pairs) were involved from the Italian twin registry. Anteroposterior and mediolateral diameters of the IJV were measured bilaterally by ultrasonography. Measurements were made both in the sitting and supine positions, with or without Valsalva maneuver. Univariate quantitative genetic modeling was performed. RESULTS: Genetic factors are responsible for 30-70% of the measured properties of IJV at higher venous pressure even after adjustment for age and gender. The highest level of inheritance was found in the supine position regarding compliance (62%) and venous diameter during Valsalva (69%). Environmental and measurement-related factors instead are more important in the sitting position, when the venous pressure is low and the venous lumen is almost collapsed. The range of capacity changes between the lowest and highest intraluminal venous pressure (full distension range) are mainly determined by genetic factors (58%). CONCLUSIONS: Our study has shown substantial heritability of IJV biomechanics at higher venous pressures even after adjustment for age and gender. These findings yield an important insight to what degree the geometric and elastic properties of the vascular wall are formed by genetic and by environmental factors in humans
MFI Type Zeolite Aggregates with Nanosized Particles via a Combination of Spray Drying and Steam-Assisted Crystallization (SAC) Techniques
This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials II
- …