4,529 research outputs found
Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model
We derive the effective potentials for composite operators in a
Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in
each case they are equivalent to the corresponding effective potentials based
on an auxiliary scalar field. The both effective potentials could lead to the
same possible spontaneous breaking and restoration of symmetries including
chiral symmetry if the momentum cutoff in the loop integrals is large enough,
and can be transformed to each other when the Schwinger-Dyson (SD) equation of
the dynamical fermion mass from the fermion-antifermion vacuum (or thermal)
condensates is used. The results also generally indicate that two effective
potentials with the same single order parameter but rather different
mathematical expressions can still be considered physically equivalent if the
SD equation corresponding to the extreme value conditions of the two potentials
have the same form.Comment: 7 pages, no figur
Infrared Hall conductivity of NaCoO
We report infrared Hall conductivity of
NaCoO thin films determined from Faraday rotation angle
measurements. exhibits two types of hole
conduction, Drude and incoherent carriers. The coherent Drude carrier shows a
large renormalized mass and Fermi liquid-like behavior of Hall scattering rate,
. The spectral weight is suppressed and disappears at T
= 120K. The incoherent carrier response is centered at mid-IR frequency and
shifts to lower energy with increasing T. Infrared Hall constant is positive
and almost independent of temperature in sharp contrast with the dc-Hall
constant.Comment: 5 Pages, 5 Figures. Author list corrected in metadata only, paper is
unchange
Design and Analysis of IPACT-based Bandwidth Allocation for Delay-Guarantee in OFDMA-PON
To guarantee delay performances for timesensitive services in an orthogonal frequency-division multiple access passive optical network (OFDMA-PON), we propose a two-dimension (i.e., subcarriers and time) upstream bandwidth allocation method based on interleaved polling with adaptive cycle time (IPACT). We first analyze its delay performance in terms of cycle time, i.e., the length of a polling cycle. Then, by setting the maximum polling cycle so as to guarantee timely transmissions for time-sensitive services, we identify the requirements, i.e., maximum bandwidth allocation, maximum number of allowed optical network
units (ONUs), and optimum number of subcarriers, for upstream bandwidth allocation with delay guarantees. The proposed scheme is evaluated both numerically and via simulation
Collapse arrest and soliton stabilization in nonlocal nonlinear media
We investigate the properties of localized waves in systems governed by
nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding
the Hamiltonian that nonlocality of the nonlinearity prevents collapse in,
e.g., Bose-Einstein condensates and optical Kerr media in all physical
dimensions. The nonlocal nonlinear response must be symmetric, but can be of
completely arbitrary shape. We use variational techniques to find the soliton
solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
Effects of metallic spacer in layered superconducting Sr2(MgTi)O3FeAs
The highly two-dimensional superconducting system
Sr2(MgTi)O3FeAs, recently synthesized in the range of 0.2 < y <
0.5, shows an Mg concentration-dependent . Reducing the Mg concentration
from y=0.5 leads to a sudden increase in , with a maximum ~40 K at
y=0.2. Using first principles calculations, the unsynthesized stoichiometric
y=0 and the substoichiometric y=0.5 compounds have been investigated. For the
50% Mg-doped phase (y=0.5), Sr2(MgTi)O3 layers are completely
insulating spacers between FeAs layers, leading to the fermiology such as that
found for other Fe pnictides. At y=0, representing a phase with metallic
Sr2TiO3 layers, the -centered Fe-derived Fermi surfaces (FSs)
considerably shrink or disappear. Instead, three -centered Ti FSs
appear, and in particular two of them have similar size, like in MgB2.
Interestingly, FSs have very low Fermi velocity in large fractions: the lowest
being 0.6 cm/s. Furthermore, our fixed spin moment calculations
suggest the possibility of magnetic ordering, with magnetic Ti and nearly
nonmagnetic Fe ions. These results indicate a crucial role of
Sr2(MgTi)O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201
A simpler and more efficient algorithm for the next-to-shortest path problem
Given an undirected graph with positive edge lengths and two
vertices and , the next-to-shortest path problem is to find an -path
which length is minimum amongst all -paths strictly longer than the
shortest path length. In this paper we show that the problem can be solved in
linear time if the distances from and to all other vertices are given.
Particularly our new algorithm runs in time for general
graphs, which improves the previous result of time for sparse
graphs, and takes only linear time for unweighted graphs, planar graphs, and
graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201
Fano Effect through Parallel-coupled Double Coulomb Islands
By means of the non-equilibrium Green function and equation of motion method,
the electronic transport is theoretically studied through a parallel-coupled
double quantum dots(DQD) in the presence of the on-dot Coulomb correlation,
with an emphasis put on the quantum interference. It has been found that in the
Coulomb blockage regime, the quantum interference between the bonding and
antiboding DQD states or that between their Coulomb blockade counterparts may
result in the Fano resonance in the conductance spectra, and the Fano peak
doublet may be observed under certain non-equilibrium condition. The
possibility of manipulating the Fano lineshape is predicted by tuning the
dot-lead coupling and magnetic flux threading the ring connecting the dots and
leads. Similar to the case without Coulomb interaction, the direction of the
asymmetric tail of Fano lineshape can be flipped by the external field. Most
importantly, by tuning the magnetic flux, the function of four relevant states
can be interchanged, giving rise to the swap effect, which might play a key
role as a qubit in the quantum computation.Comment: 7 pages, 5 figure
Measurement of the plasma astrophysical S factor for the 3He(D, p)4He reaction in exploding molecular clusters
The plasma astrophysical S factor for the 3He(D, p)4He fusion reaction was
measured for the first time at temperatures of few keV, using the interaction
of intense ultrafast laser pulses with molecular deuterium clusters mixed with
3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the
gas jet target in order to allow the measurement of the cross-section for the
3He(D, p)4He reaction. The yield of 14.7 MeV protons from the 3He(D, p)4He
reaction was measured in order to extract the astrophysical S factor at low
energies. Our result is in agreement with other S factor parameterizations
found in the literature
- …