2 research outputs found
Counter-propagating entangled photons from a waveguide with periodic nonlinearity
The conditions required for spontaneous parametric down-conversion in a
waveguide with periodic nonlinearity in the presence of an unguided pump field
are established. Control of the periodic nonlinearity and the physical
properties of the waveguide permits the quasi-phase matching equations that
describe counter-propagating guided signal and idler beams to be satisfied. We
compare the tuning curves and spectral properties of such counter-propagating
beams to those for co-propagating beams under typical experimental conditions.
We find that the counter-propagating beams exhibit narrow bandwidth permitting
the generation of quantum states that possess discrete-frequency entanglement.
Such states may be useful for experiments in quantum optics and technologies
that benefit from frequency entanglement.Comment: submitted to Phys. Rev.