59,343 research outputs found

    Mentoring New Teachers Towards Leadership

    Get PDF

    Systematic Review Of The Published Literature On Success And Failure Rates Of Nonsurgical Endodontic Treatment

    Get PDF
    Purpose: The aim of this study was to conduct a systematic review of the literature on treatment results in non-surgical Endodontic therapy. This included researching and defining inclusion and exclusion criteria and applying these criteria to identified relevant publications. The overall goal was to analyze the available literature and synthesize these results in an effort to inform the profession on the success and failure rates in non-surgical root canal therapy. Materials and Methods: Inclusion and exclusion criteria were established in an effort to systemically review and formulate an evidence-based understanding of treatment results in non-surgical root canal therapy. A comprehensive literature search was conducted using using PubMed and the Cochrane database using the search terms root canal therapy, apical periodontitis, success, failure, and treatment outcome and was restricted to January 2009 through December 2011. Articles were reviewed and analyzed according to the inclusion/exclusion criteria. Results: A review of the abstracts for these 330 publications resulted in 51 publications articles to be examined more closely for relevance and inclusion. From this, no publication met all defined inclusion/exclusion criteria. Discussion: Defining a set of criteria for how success is defined in practice is vital to the field of Endodontics. It is important to define, establish and incorporate a standardized methodology in the way research is conducted on Endodontic treatment results. This is necessary for the application of research to the practice of evidence-based Endodontics

    Sensitivity of Forecast Skill to Different Objective Analysis Schemes

    Get PDF
    Numerical weather forecasts are characterized by rapidly declining skill in the first 48 to 72 h. Recent estimates of the sources of forecast error indicate that the inaccurate specification of the initial conditions contributes substantially to this error. The sensitivity of the forecast skill to the initial conditions is examined by comparing a set of real-data experiments whose initial data were obtained with two different analysis schemes. Results are presented to emphasize the importance of the objective analysis techniques used in the assimilation of observational data

    Introducing Adaptive Incremental Dynamic Analysis: A New Tool for Linking Ground Motion Selection and Structural Response Assessment

    Get PDF
    Adaptive Incremental Dynamic Analysis (AIDA) is a novel ground motion selection scheme that adaptively changes the ground motion suites at different ground motion intensity levels to match hazardconsistent properties for structural response assessment. Incremental DynamicAnalysis (IDA), a current dynamic response history analysis practice in Performance-Based Earthquake Engineering (PBEE), uses the same suite of ground motions at all Intensity Measure (IM) levels to estimate structural response. Probabilistic Seismic Hazard Analysis (PSHA) deaggregation tells us, however, that the target distributions of important ground motion properties change as the IM levels change. To match hazard-consistent ground motion properties, ground motions can be re-selected at each IM level, but ground motion continuity is lost when using such “stripes” (i.e., individual analysis points at each IM level). Alternatively, the data from the same ground motions in IDA can be re-weighted at various IM levels to match their respective target distributions of properties, but this implies potential omission of data and curse of dimensionality. Adaptive Incremental Dynamic Analysis, in contrast, gradually changes ground motion records to match ground motion properties as the IM level changes, while also partially maintaining ground motion continuity without the omission of useful data. AIDA requires careful record selection across IM levels. Potential record selection criteria include ground motion properties from deaggregation, or target spectrum such as the Conditional Spectrum. Steps to perform AIDA are listed as follows: (1) obtain target ground motion properties for each IM level; (2) determine “bin sizes” (i.e., tolerance for acceptable ground motion properties) and identify all candidate ground motions that fall within target bins; (3) keep ground motions that are usable at multiple IM levels, to maintain continuity; (4) use each ground motion for IDA within its allowable IM range. As a result, if we keep increasing the “bin sizes”, AIDA will approach IDA asymptotically; on the other hand, if we decrease the “bin sizes”, AIDA will approach the other end of “stripes”. This paper addresses the challenges of changing records across various IM levels. Different ground motion selection schemes are compared with AIDA to demonstrate the advantages of using AIDA. Example structural analyses are used to illustrate the impact of AIDA on the estimation of structural response in PBEE. By combining the benefits of IDA and PSHA without the omission of useful data, AIDA is a promising new tool for linking ground motion selection and structural response assessment

    Finding Opportunities in Our (Re)Visions

    Get PDF

    Logic-controlled occlusive cuff system

    Get PDF
    An occlusive cuff system comprises a pressure cuff and a source of regulated compressed gas feeding the cuff through an electrically operated fill valve. An electrically operated vent valve vents the cuff to the ambient pressure. The fill valve is normally closed and the vent valve is normally open. In response to an external start signal, a logic network opens the fill valve and closes the vent valve, thereby starting the pressurization cycle and a timer. A pressure transducer continuously monitors the pressure in the cuff. When the transducer's output equals a selected reference voltage, a comparator causes the logic network to close the fill valve. The timer, after a selected time delay, opens the vent valve to the ambient pressure, thereby ending the pressurization cycle

    Solar thermal energy receiver

    Get PDF
    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity

    Accidents to Farm People. 29,361 Reasons for a Safety Program

    Get PDF
    PDF pages:

    The Lewis Heat Pipe Code with Application to SP-100 GES Heat Pipes

    Get PDF
    The NASA Lewis Research Center has a thermal management program supporting SP-100 goals, which includes heat pipe radiator development. As a part of the program Lewis has elected to prepare an in-house heat pipe code tailored to the needs of its SP-100 staff to supplement codes from other sources. The latter, designed to meet the needs of the originating organizations, were deemed not entirely appropriate for use at Lewis. However, a review of their features proved most beneficial in the design of the Lewis code

    A Computationally Efficient Ground-Motion Selection Algorithm for Matching a Target Response Spectrum Mean and Variance

    Get PDF
    Dynamic structural analysis often requires the selection of input ground motions with a target mean response spectrum. The variance of the target response spectrum is usually ignored or accounted for in an ad hoc manner, which can bias the structural response estimates. This manuscript proposes a computationally efficient and theoretically consistent algorithm to select ground motions that match the target response spectrum mean and variance. The selection algorithm probabilistically generates multiple response spectra from a target distribution, and then selects recorded ground motions whose response spectra individually match the simulated response spectra. A greedy optimization technique further improves the match between the target and the sample means and variances. The proposed algorithm is used to select ground motions for the analysis of sample structures in order to assess the impact of considering ground-motion variance on the structural response estimates. The implications for code-based design and performance-based earthquake engineering are discussed
    • …
    corecore