55,649 research outputs found
Structure of a linear array of hollow vortices of finite cross-section
Free-streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored, vortices in an inviscid incompressible fluid. If each vortex has area A and the separation is L, there are two possible shapes if A[1/2]/L is less than a critical value 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable while the less deformed shape is stable
Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP
The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event
Perceptions of healthy eating and physical activity in an ethnically diverse sample of young children and their parents: the DEAL prevention of obesity study
Background: Ethnicity is a consistent correlate of obesity; however, little is known about the perceptions and beliefs that may influence engagement with obesity prevention programmes among ethnic minority children. Barriers to (and facilitators of) healthy lifestyles were examined in the qualitative arm of the London (UK) DiEt and Active Living (DEAL) study.
Methods: Children aged 8–13 years and their parents, from diverse ethnic groups, were recruited through schools and through places of worship. Thirteen focus group sessions were held with 70 children (n = 39 girls) and eight focus groups and five interviews with 43 parents (n = 34 mothers).
Results: Across ethnic groups, dislike of school meals, lack of knowledge of physical activity guidelines for children and negativity towards physical education at school among girls, potentially hindered healthy living. Issues relating to families' wider neighbourhoods (e.g. fast food outlets; lack of safety) illustrated child and parental concerns that environments could thwart intentions for healthy eating and activity. By contrast, there was general awareness of key dietary messages and an emphasis on dietary variety and balance. For ethnic minorities, places of worship were key focal points for social support. Discourse around the retention of traditional practices, family roles and responsibilities, and religion highlighted both potential facilitators (e.g. the importance of family meals) and barriers (reliance on convenience stores for traditional foods). Socio-economic circumstances intersected with key themes, within and between ethnic groups.
Conclusions: Several barriers to (and facilitators of) healthy lifestyles were common across ethnic groups. Diversity of cultural frameworks not only were more nuanced, but also shaped lifestyles for minority children.</p
A star camera aspect system suitable for use in balloon experiments
A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)
Stable divisorial gonality is in NP
Divisorial gonality and stable divisorial gonality are graph parameters,
which have an origin in algebraic geometry. Divisorial gonality of a connected
graph can be defined with help of a chip firing game on . The stable
divisorial gonality of is the minimum divisorial gonality over all
subdivisions of edges of .
In this paper we prove that deciding whether a given connected graph has
stable divisorial gonality at most a given integer belongs to the class NP.
Combined with the result that (stable) divisorial gonality is NP-hard by
Gijswijt, we obtain that stable divisorial gonality is NP-complete. The proof
consist of a partial certificate that can be verified by solving an Integer
Linear Programming instance. As a corollary, we have that the number of
subdivisions needed for minimum stable divisorial gonality of a graph with
vertices is bounded by for a polynomial
Laser anemometer measurements of trailing vortices in water
A series of measurements of trailing vortices behind lifting hydrofoils is described. These measurements were made in the Caltech Free-Surface Water Tunnel, using a laser-Doppler velocimeter to measure two components of velocity in the vortex wake. Two different model planforms were tested, and measurements were made at several free-stream velocities and angles of attack for each. Velocity profiles were measured at distances downstream of the model of from five to sixty chord lengths. These measurements are the first results of a continuing experimental programme.
In § 3 of this paper, the theory of trailing vortices is discussed. The effects of ‘vortex wandering’ upon the measurements are computed, and the corrected results are seen to be in reasonable agreement with the theory
Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1
Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified
Vector Meson Dominance as a first step in a systematic approximation: the pion vector form factor
Pade Approximants can be used to go beyond Vector Meson Dominance in a
systematic approximation. We illustrate this fact with the case of the pion
vector form factor and extract values for the first two coefficients of its
Taylor expansion. Pade Approximants are shown to be a useful and simple tool
for incorporating high-energy information, allowing an improved determination
of these Taylor coefficients.Comment: 13 pages, 7 figure
Analysis of the X-Factor and X-Factor stretch during the completion of a golf practice session in low-handicap golfers
The X-Factor and X-Factor stretch have been positively correlated with golf long game performance. The aim of this study was to compare the X-Factor, X-Factor stretch and long game performance variables pre and following a golf practice session. A group of male golfers (n = 15, handicap = 3.3 ± 1.7) participated in the laboratory-based-study. Movement and performance variables were collected from five golf swings performed pre and following a golf practice session using a motion capture system and launch monitor respectively. Following the practice session, significant increases were observed in the X-Factor (p = 0.00, d = 0.22) and the X-Factor stretch (p = 0.02, d = 0.25). Specifically, the X-Factor increased from 52.82 ± 5.64 ° to 54.06 ± 5.61 ° following the practice session. The X-Factor stretch increased from 1.54 ± 1.05 ° to 1.90 ± 1.41 ° following the practice session. Significant differences were displayed in club head velocity (p = 0.00, d = 0.35), ball velocity (p = 0.01, d = 0.21) and actual carry distance (p = 0.00, d = 0.29) following the practice session. These findings suggest that performing multiple golf shots is not detrimental in terms of muscular fatigue in the long game performance. In actual fact, the findings demonstrate that performing 100 golf shots increases the X-Factor, X-Factor stretch patterns and performance variables which, in turn, increases long game performance. These findings can help PGA golf Professionals improve teaching practices and formulation of golf programmes and warm-up sessions
- …