1,724 research outputs found

    Probing a ferromagnetic critical regime using nonlinear susceptibility

    Full text link
    The second order para-ferromagnetic phase transition in a series of amorphous alloys (Fe{_5}Co{_{50}}Ni{_{17-x}}Cr{_x}B{_{16}}Si{_{12}}) is investigated using nonlinear susceptibility. A simple molecular field treatment for the critical region shows that the third order suceptibility (chi{_3}) diverges on both sides of the transition temperature, and changes sign at T{_C}. This critical behaviour is observed experimentally in this series of amorphous ferromagnets, and the related assymptotic critical exponents are calculated. It is shown that using the proper scaling equations, all the exponents necessary for a complete characterization of the phase transition can be determined using linear and nonlinear susceptiblity measurements alone. Using meticulous nonlinear susceptibility measurements, it is shown that at times chi{_3} can be more sensitive than the linear susceptibility (chi{_1}) in unravelling the magnetism of ferromagnetic spin systems. A new technique for accurately determining T{_C} is discussed, which makes use of the functional form of chi{_3} in the critical region.Comment: 11 Figures, Submitted to Physical Review

    Interface driven magnetoelectric effects in granular CrO2

    Full text link
    Antiferromagnetic and magnetoelectric Cr2O3-surfaces strongly affect the electronic properties in half metallic CrO2. We show the presence of a Cr2O3 surface layer on CrO3 grains by high-resolution transmission electron microscopy. The effect of these surface layers is demonstrated by measurements of the temperature variation of the magnetoelectric susceptibility. A major observation is a sign change at about 100 K followed by a monotonic rise as a function of temperature. These electric field induced moments in CrO3 are correlated with the magnetoelectric susceptibility of pure Cr2O3. This study indicates that it is important to take into account the magnetoelectric character of thin surface layers of Cr2O3 in granular CrO2 for better understanding the transport mechanism in this system. The observation of a finite magnetoelectric susceptibility near room temperature may find utility in device applications.Comment: Figure 1 with strongly reduced resolutio

    Selective substitution in orbital domains of a low doped manganite : an investigation from Griffiths phenomenon and modification of glassy features

    Full text link
    An effort is made to study the contrast in magnetic behavior resulting from minimal disorder introduced by substitution of 2.5% Ga or Al in Mn-site of La0.9{_{0.9}}Sr0.1_{0.1}MnO3{_3}. It is considered that Ga or Al selectively creates disorder within the orbital domains or on its walls, causing enhancement of Griffiths phase (GP) singularity for the former and disappearance of it in the later case. It is shown that Ga replaces Mn3+^{3+} which is considered to be concentrated within the domains, whereas Al replaces Mn4+^{4+} which is segregated on the hole-rich walls, without causing any significant effect on structure or ferromagnetic transition temperatures. Thus, it is presumed that the effect of disorder created by Ga extend across the bulk of the domain having correlation over similar length-scale resulting in enhancement of GP phenomenon. On the contrary, effect of disorder created by Al remains restricted to the walls resulting in the modification of the dynamics arising from the domain walls and suppresses the GP. Moreover contrasting features are observed in the low temperature region of the compounds; a re-entrant spin glass like behavior is observed in the Ga doped sample, while the observed characteristics for the Al doped sample is ascribed only to modified domain wall dynamics with the absence of any glassy phase. Distinctive features in third order susceptibility measurements reveals that the magnetic ground state of the entire series comprises of orbital domain states. These observations bring out the role of the nature of disorder on GP phenomenon and also reconfirms the character of self-organization in low-doped manganites

    Development of a heating reactor for a continuous flow-through application in urea measurement

    Get PDF
    In most biochemical analyses, a flow-through heating arrangement is needed to reduce the reaction time or maintain a constant temperature. A rectangular reactor is described that is constructed of aluminium, is hollow inside and is filled with silicone oil. The glass coil through which the solution flows is immersed in the silicone oil. The heater, a Peltier-effect heat pump, on one side and the temperature sensor on the other side of the reactor body are embedded for heating and temperature control. The brief performance evaluation of the reactor is discussed by measuring the absorbance of urea concentration at different temperatures

    A novel form of actin in Leishmania: molecular characterisation, subcellular localisation and association with subpellicular microtubules

    Get PDF
    To study the occurrence and subcellular distribution of actin in trypanosomatid parasites, we have cloned and overexpressed Leishmania donovani actin gene in bacteria, purified the protein, and employed the affinity purified rabbit polyclonal anti-recombinant actin antibodies as a probe to study the organisation and subcellular distribution of actin in Leishmania cells. The Leishmania actin did not cross react with antimammalian actin antibodies but was readily recognized by the anti-Leishmania actin antibodies in both the promastigote and amastigote forms of the parasite. About 106 copies per cell of this protein (Mr 42.05 kDa) were present in the Leishmania promastigote. Unlike other eukaryotic actins, the oligomeric forms of Leishmania actin were not stained by phalloidin nor were dissociated by actin filament-disrupting agents, like Latrunculin B and Cytochalasin D. Analysis of the primary structure of this protein revealed that these unusual characteristics may be related to the presence of highly diverged amino acids in the DNase I-binding loop (amino acids 40-50) and the hydrophobic plug (amino acids 262-272) regions of Leishmania actin. The subcellular distribution of actin was studied in the Leishmania promastigotes by employing immunoelectron and immunofluorescence microscopies. This protein was present not only in the flagella, flagellar pocket, nucleus and the kinetoplast but it was also localized on the nuclear, vacuolar and cytoplasmic face of the plasma membranes. Further, the plasma membrane-associated actin was colocalised with subpellicular microtubules, while most of the actin present in the kinetoplast colocalised with the k-DNA network. These results clearly indicate that Leishmania contains a novel form of actin which may structurally and functionally differ from other eukaryotic actins. The functional significance of these observations is discussed

    Formation of finite antiferromagnetic clusters and the effect of electronic phase separation in Pr{_0.5}Ca{_0.5}Mn{_0.975}Al{_0.025}O{_3}

    Full text link
    We report the first experimental evidence of a magnetic phase arising due to the thermal blocking of antiferromagnetic clusters in the weakened charge and orbital ordered system Pr{_0.5}Ca{_0.5}Mn{_0.975}Al{_0.025}O{_3}. The third order susceptibility (\chi_3) is used to differentiate this transition from a spin or cluster glass like freezing mechanism. These clusters are found to be mesoscopic and robust to electronic phase separation which only enriches the antiphase domain walls with holes at the cost of the bulk, without changing the size of these clusters. This implies that Al substitution provides sufficient disorder to quench the length scales of the striped phases.Comment: 4 Post Script Figure
    • …
    corecore