88 research outputs found

    Identification of Post-Transcriptional Modulators of Breast Cancer Transcription Factor Activity Using MINDy

    Get PDF
    We have recently identified transcription factors (TFs) that are key drivers of breast cancer risk. To better understand the pathways or sub-networks in which these TFs mediate their function we sought to identify upstream modulators of their activity. We applied the MINDy (Modulator Inference by Network Dynamics) algorithm to four TFs (ESR1, FOXA1, GATA3 and SPDEF) that are key drivers of estrogen receptor-positive (ER+) breast cancer risk, as well as cancer progression. Our computational analysis identified over 500 potential modulators. We assayed 189 of these and identified 55 genes with functional characteristics that were consistent with a role as TF modulators. In the future, the identified modulators may be tested as potential therapeutic targets, able to alter the activity of TFs that are critical in the development of breast cancer

    BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes

    Get PDF
    Allele-specific measurements of transcription factor binding from ChIP-seq data are key to dissecting the allelic effects of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChIP to correct for the effect of background allele frequency on the observed ChIP-seq read counts. BaalChIP allows the joint analysis of multiple ChIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE ChIP-seq and six targeted FAIRE-seq samples, we show that BaalChIP effectively corrects allele-specific analysis for copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.We would like to acknowledge the support of the University of Cambridge, Cancer Research UK (CRUK), and Hutchison Whampoa Limited. Parts of this work were funded by CRUK core grants C14303/A17197 and A19274 and the Breast Cancer Research Foundation

    A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression

    Get PDF
    Genetic mapping studies have identified multiple cancer susceptibility regions at chromosome 8q24, upstream of the MYC oncogene. MYC has been widely presumed as the regulated target gene, but definitive evidence functionally linking these cancer regions with MYC has been difficult to obtain. Here we examined candidate functional variants of a haplotype block at 8q24 encompassing the two independent risk alleles for prostate and breast cancer, rs620861 and rs13281615. We used the mapping of DNase I hypersensitive sites as a tool to prioritise regions for further functional analysis. This approach identified rs378854, which is in complete linkage disequilibrium (LD) with rs620861, as a novel functional prostate cancer-specific genetic variant. We demonstrate that the risk allele (G) of rs378854 reduces binding of the transcription factor YY1 in vitro. This factor is known to repress global transcription in prostate cancer and is a candidate tumour suppressor. Additional experiments showed that the YY1 binding site is occupied in vivo in prostate cancer, but not breast cancer cells, consistent with the observed cancer-specific effects of this single nucleotide polymorphism (SNP). Using chromatin conformation capture (3C) experiments, we found that the region surrounding rs378854 interacts with the MYC and PVT1 promoters. Moreover, expression of the PVT1 oncogene in normal prostate tissue increased with the presence of the risk allele of rs378854, while expression of MYC was not affected. In conclusion, we identified a new functional prostate cancer risk variant at the 8q24 locus, rs378854 allele G, that reduces binding of the YY1 protein and is associated with increased expression of PVT1 located 0.5 Mb downstream.This work was funded by Cancer Research UK (http://www.cancerresearchuk.org/) and by the Intramural Research Program, Division of Cancer Epidemiology and Genetics and Centre for Cancer Research, National Cancer Institute, National Institutes of Health, United States of America (http://www.nih.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A descriptive study of UK cancer genetics services: an emerging clinical response to the new genetics

    Get PDF
    The objective was to describe NHS cancer genetic counselling services and compare UK regions. The study design was a cross-sectional study over 4 weeks and attendee survey. The setting was 22 of the 24 regional cancer genetics services in the UK NHS. Participants were individuals aged over 18 attending clinics at these services. Outcome measures were staff levels, referral rates, consultation rates, follow-up plans, waiting time. There were only 11 dedicated cancer geneticists across the 22 centres. Referrals were mainly concerned with breast (63%), bowel (18%) and ovarian (12%) cancers. Only 7% of referrals were for men and 3% were for individuals from ethnic minorities. Referral rates varied from 76 to 410 per million per annum across the regions. Median waiting time for an initial appointment was 19 weeks, ranging across regions from 4 to 53 weeks. Individuals at population-level genetic risk accounted for 27% of consultations (range 0%, 58%). Shortfalls in cancer genetics staff and in the provision of genetic testing and cancer surveillance have resulted in large regional variations in access to care. Initiatives to disseminate referral and management guidelines to cancer units and primary care should be adequately resourced so that clinical genetics teams can focus on the genetic testing and management of high-risk families. Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    A micro costing of NHS cancer genetic services

    Get PDF
    This paper presents the first full micro costing of a commonly used cancer genetic counselling and testing protocol used in the UK. Costs were estimated for the Cardiff clinic of the Cancer Genetics Service in Wales by issuing a questionnaire to all staff, conducting an audit of clinic rooms and equipment and obtaining gross unit costs from the finance department. A total of 22 distinct event pathways were identified for patients at risk of developing breast, ovarian, breast and ovarian or colorectal cancer. The mean cost per patient were Β£97–£151 for patients at moderate risk, Β£975–£3072 for patients at high risk of developing colorectal cancer and Β£675–£2909 for patients at high risk of developing breast or ovarian cancer. The most expensive element of cancer genetic services was labour. Labour costs were dependent upon the amount of labour, staff grade, number of counsellors used and the proportion of staff time devoted to indirect patient contact. With the growing demand for cancer genetic services and the growing number of national and regional cancer genetic centers, there is a need for the different protocols being used to be thoroughly evaluated in terms of costs and outcomes

    Estimating the survival benefits gained from providing national cancer genetic services to women with a family history of breast cancer

    Get PDF
    The aim of this paper is to compare a service offering genetic testing and presymptomatic surveillance to women at increased risk of developing breast cancer with its predecessor of no service at all in terms of survival and quality-adjusted survival (QALYs) by means of a Markov cohort chain simulation model. Genetic assessment and presymptomatic care provided between 0.07-1.61 mean additional life years and 0.05-1.67 mean QALYs over no services. Prophylactic surgery and surveillance extended mean life expectancy by 0.41-1.61 and 0.32-0.99 years, respectively over no services for high-risk women. Model outcomes were sensitive to all the parameters varied in the sensitivity analysis. Providing cancer genetic services increase survival and as long as services do not induce adverse psychological effects they also provide more QALYs. The greatest survival and QALY benefits were found for women with identified mutations. As more cancer genes are identified, the survival and cost-effectiveness of genetic services will improve. Although mastectomy provided most additional life years, when quality of life was accounted for oophorectomy was the optimal strategy. Delayed entry into coordinated genetic services was found to diminish the average survival and QALY gains for a woman utilising these services
    • …
    corecore