23 research outputs found
Investigations into the interface failure of yttria partially stabilised zirconia - porcelain dental prostheses through microscale residual stress and phase quantification
Objectives: Yttria Partially Stabilised Zirconia (YPSZ) is a high strength ceramic which has become widely used in porcelain veneered dental copings due to its exceptional toughness. Within these components the residual stress and crystallographic phase of YPSZ close to the interface are highly influential in the primary failure mode; near interface porcelain chipping. In order to improve present understanding of this behaviour, characterisation of these parameters is needed at an improved spatial resolution.Methods: In this study transmission micro-focus X-ray Diffraction, Raman spectroscopy, and focused ion beam milling residual stress analysis techniques have, for the first time, been used to quantify and cross-validate the microscale spatial variation of phase and residual stress of YPSZ in a prosthesis cross-section.Results: The results of all techniques were found to be comparable and complementary. Monoclinic YPSZ was observed within the first 10m of the YPSZ-porcelain interface with a maximum volume fraction of 60%. Tensile stresses were observed within the first 150m of the interface with a maximum value of ≈ 300 MPa at 50m from the interface. The remainder of the coping was in mild compression at ≈ − 30 MPa, with shear stresses of a similar magnitude also being induced by the YPSZ phase transformation.Significance: The analysis indicates thatthe interaction between phase transformation, residual stress and porcelain creep at YPSZ-porcelain interface results in a localised porcelain fracture toughness reduction. This explains the increased propensity of failure at this location, and can be used as a basis for improving prosthesis design
Residual strain mapping through pair distribution function analysis of the porcelain veneer within a yttria partially stabilised zirconia dental prosthesis
OBJECTIVE: Residually strained porcelain is influential in the early onset of failure in Yttria Partially Stabilised Zirconia (YPSZ) - porcelain dental prosthesis. In order to improve current understanding it is necessary to increase the spatial resolution of residual strain analysis in these veneers. METHODS: Few techniques exist which can resolve residual stress in amorphous materials at the microscale resolution required. For this reason, recent developments in Pair Distribution Function (PDF) analysis of X-ray diffraction data of dental porcelain have been exploited. This approach has facilitated high-resolution (70μm) quantification of residual strain in a YPSZ-porcelain dental prosthesis. In order to cross-validate this technique, the sequential ring-core focused ion beam and digital image correlation approach was implemented at a step size of 50μm. This semi-destructive technique exploits microscale strain relief to provide quantitative estimates of the near-surface residual strain. RESULTS: The two techniques were found to show highly comparable results. The residual strain within the veneer was found to be primarily tensile, with the highest magnitude stresses located at the YPSZ-porcelain interface where failure is known to originate. Oscillatory tensile and compressive stresses were also found in a direction parallel to the interface, likely to be induced by the multiple layering used during fabrication. SIGNIFICANCE: This study provides the insights required to improve prosthesis modelling, to develop new processing routes that minimise residual stress and ultimately to reduce prosthesis failure rates. The PDF approach also offers a powerful new technique for microscale strain quantification in amorphous materials.</p
Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains
Human enamel is a typical hierarchical mineralized tissue with a two-level composite structure. To date, few studies have focused on how the mechanical behaviour of this tissue is affected by both the rod orientation at the microscale and the preferred orientation of mineral crystallites at the nanoscale. In this study, wide-angle X-ray scattering was used to determine the internal lattice strain response of human enamel samples (with differing rod directions) as a function of in situ uniaxial compressive loading. Quantitative stress distribution evaluation in the birefringent mounting epoxy was performed in parallel using photoelastic techniques. The resulting experimental data was analysed using an advanced multiscale Eshelby inclusion model that takes into account the two-level hierarchical structure of human enamel, and reflects the differing rod directions and orientation distributions of hydroxyapatite crystals. The achieved satisfactory agreement between the model and the experimental data, in terms of the values of multidirectional strain components under the action of differently orientated loads, suggests that the multiscale approach captures reasonably successfully the structure-property relationship between the hierarchical architecture of human enamel and its response to the applied forces. This novel and systematic approach can be used to improve the interpretation of the mechanical properties of enamel, as well as of the textured hierarchical biomaterials in general
Characterisation of nanovoiding in dental porcelain using small angle neutron scattering and transmission electron microscopy
Objectives Recent studies of the yttria partially stabilised zirconia–porcelain interface have revealed the presence of near-interface porcelain nanovoiding which reduces toughness and leads to component failure. One potential explanation for these nanoscale features is thermal creep which is induced by the combination of the residual stresses at the interface and sintering temperatures applied during manufacture. The present study provides improved understanding of this important phenomenon. Methods Transmission electron microscopy and small angle neutron scattering were applied to a sample which was crept at 750 °C and 100 MPa (sample C), a second which was exposed to an identical heat treatment schedule in the absence of applied stress (sample H), and a reference sample in the as-machined state (sample A). Results The complementary insights provided by the two techniques were in good agreement and log-normal void size distributions were found in all samples. The void number density was found to be 1.61 μm−2, 25.4 μm−2 and 98.6 μm−2 in samples A, H and C respectively. The average void diameter in sample A (27.1 nm) was found to be more than twice as large as in samples H (10.2 nm) and C (11.6 nm). The crept data showed the highest skewness parameter (2.35), indicating stress-induced growth of larger voids and void coalescence that has not been previously observed. Significance The improved insight presented in this study can be integrated into existing models of dental prostheses in order to optimise manufacturing routes and thereby reduce the significant detrimental impact of this nanostructural phenomenon.</p
A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniques
Quantification of residual stress gradients can provide great improvements in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure and structural integrity. Highly focused local probe non-destructive techniques such as X-ray diffraction, electron diffraction or Raman spectroscopy have an established track record in determining spatial variations in the relative changes in residual stress with respect to a reference state for many structural materials. However, the interpretation of these measurements in terms of absolute stress values requires a strain-free sample often difficult to obtain due to the influence of chemistry, microstructure or processing route. With the increasing availability of focused ion beam instruments, a new approach has been developed which is known as the micro-scale ring-core focused ion beam-digital image correlation technique. This technique is becoming the principal tool for quantifying absolute in-plane residual stresses. It can be applied to a broad range of materials: crystalline and amorphous metallic alloys and ceramics, polymers, composites and biomaterials. The precise nano-scale positioning and well-defined gauge volume of this experimental technique make it eminently suitable for spatially resolved analysis, that is, residual stress profiling and mapping. Following a summary of micro-stress evaluation approaches, we focus our attention on focused ion beam-digital image correlation methods and assess the application of micro-scale ring-core methods for spatially resolved residual stress profiling. The sequential ring-core milling focused ion beam-digital image correlation method allows micro- to macro-scale mapping at the step of 10–1000 μm, while the parallel focused ion beam-digital image correlation approach exploits simultaneous milling operation to quantify stress profiles at the micron scale (1–10 μm). Cross-validation against X-ray diffraction results confirms that these approaches represent accurate, reliable and effective residual stress mapping methods. </jats:p
Hierarchical modelling and X-ray analysis of human dentine and enamel
Human teeth consist of enamel, dentine and cementum, hierarchical mineralised tissues with a two-level composite structure. The understanding of the mechanical behaviour of dentine and enamel in terms of their micro- and nano-scale structure has been somewhat limited. Here we present an overview of our recent work aimed at improving the understanding of the internal lattice strain response of the mineral crystallites of different orientations under external in situ loading. A range of experimental techniques was employed for the purpose of this analysis. Small- and Wide- Angle X-ray Scattering (SAXS/WAXS) were used to determine the internal lattice strain and orientational distribution of HAp crystals, while quantitative stress distribution evaluation in the birefringent mounting epoxy surrounding the sample was carried out in parallel using photoelasticity. Finite element analysis and advanced multi-scale Eshelby inclusion modelling were used to interpret the data. The satisfactory agreement achieved between the model and the experimental data, in terms of the values of multi-directional strain components under the action of differently orientated loads, demonstrates that our multi-scale approach captures successfully the structure-property relationships between the hierarchical architecture of human dental tissues and their response to the applied forces. Our systematic approach can be used to improve the insight into the mechanical properties of dentine and enamel, and of textured hierarchical biomaterials (such as bones) in general.</p
A study of phase transformation at the surface of a zirconia ceramic
Yttria Partially Stabilized Zirconia (YPSZ) is one of the most important engineering ceramic materials in that it displays a whole host of outstanding structural and functional properties. Of particular importance for load-bearing applications is the remarkable fracture toughness of YPSZ that arises from its ability to undergo martensitic transformation, a phase transformation that is dependent on stress, temperature, time, humidity, grain size, and the proximity of an interface. The present study was aimed at revealing the influence of the thermal ageing on the tetragonal to monoclinic phase transformation in the near-surface regions of YPSZ. In order to perform qualitative and quantitative characterisation of the phase composition, three principal microscopic techniques were employed: atomic force microscopy, depth resolved Raman micro-spectroscopy, and synchrotron X-ray diffraction. Satisfactory consistency was achieved between the results obtained using different techniques. Moreover, the data obtained in this way displayed complementarity that provided valuable input for the development of thermodynamic modelling of the complex inter-dependence between phase state and processing history of zirconia ceramics
'Hybrid' non-destructive imaging techniques for engineering materials applications
The combination of X-ray imaging and diffraction techniques provides a unique tool for structural and mechanical analysis of engineering components. A variety of modes can be employed in terms of the spatial resolution (length-scale), time resolution (frequency), and the nature of the physical quantity
being interrogated. This thesis describes my contributions towards the development of novel X-ray “rich” imaging experimental techniques and data interpretation. The experimental findings have been validated via comparison with other experimental methods and numerical modelling.
The combination of fast acquisition rate and high penetration properties of X-ray beams allows the collection of high-resolution 3-D tomographic data sets at submicron resolution during in situ deformation experiments. Digital Volume Correlation analysis tools developed in this study help understand crack propagation mechanisms in quasi-brittle materials and elasto-plastic deformation in co-sprayed composites.
For the cases of crystalline specimens where the knowledge of “live” or residual elastic strain distributions is required, diffraction techniques have been advanced. Diffraction Strain Tomography (DST) allows non-destructive reconstruction of the 2-D (in-plane) variation of the out-of-plane strain component. Another diffraction modality dubbed Laue Orientation Tomography (LOT), a grain mapping approach has been proposed and developed based on the translate-rotate tomographic acquisition strategy. It allows the reconstruction of grain shape and orientation within polycrystalline samples, and provides information about intragranular lattice strain and distortion. The implications of this method have been thoroughly investigated.
State-of-the-art engineering characterisation techniques evolve towards scrutinising submicron scale structural features and strain variation using the complementarity of X-ray imaging and diffraction.
The first successful feasibility study is reported of in operando stress analysis in an internal combustion engine.
Finally, further advancement of ‘rich’ imaging techniques is illustrated via the first successful
application of Time-of-Flight Neutron Diffraction Strain (TOF-NDST) tomography for non-destructive reconstruction of the complete strain tensor using an inverse eigenstrain formulation.This thesis is not available on ORA