1,756 research outputs found

    Behavioral simulation and synthesis of biological neuron systems using synthesizable VHDL

    No full text
    Neurons are complex biological entities which form the basis of nervous systems. Insight can be gained into neuron behavior through the use of computer models and as a result many such models have been developed. However, there exists a trade-off between biological accuracy and simulation time with the most realistic results requiring extensive computation. To address this issue, a novel approach is described in this paper that allows complex models of real biological systems to be simulated at a speed greater than real time and with excellent accuracy. The approach is based on a specially developed neuron model VHDL library which allows complex neuron systems to be implemented on field programmable gate array (FPGA) hardware. The locomotion system of the nematode Caenorhabditis elegans is used as a case study and the measured results show that the real time FPGA based implementation performs 288 times faster than traditional ModelSim simulations for the same accuracy

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target

    Systematic review and meta-analysis of the provision of preventive care for modifiable chronic disease risk behaviours by mental health services

    Get PDF
    People with mental illness experience increased chronic disease burden, contributed to by a greater prevalence of modifiable chronic disease risk behaviours. Policies recommend mental health services provide preventive care for such risk behaviours. Provision of such care has not previously been synthesised. This review assessed the provision of preventive care for modifiable chronic disease risk behaviours by mental health services. Four databases were searched from 2006 to 2017. Eligible studies were observational quantitative study designs conducted in mental health services, where preventive care was provided to clients for tobacco smoking, harmful alcohol consumption, inadequate nutrition, or inadequate physical activity. Two reviewers independently screened studies, conducted data extraction and critical appraisal. Results were pooled as proportions of clients receiving or clinicians providing preventive care using random effects meta-analyses, by risk behaviour and preventive care element (ask/assess, advise, assist, arrange). Subgroup analyses were conducted by mental health service type (inpatient, outpatient, other/multiple). Narrative synthesis was used where meta-analysis was not possible. Thirty-eight studies were included with 26 amenable to meta-analyses. Analyses revealed that rates of assessment were highest for smoking (78%, 95% confidence interval [CI]:59%–96%) and lowest for nutrition (17%, 95% CI:1%–35%); with variable rates of care provision for all behaviours, care elements, and across service types, with substantial heterogeneity across analyses. Findings indicated suboptimal and variable provision of preventive care for modifiable chronic disease risk behaviours in mental health services, but should be considered with caution due to the very low quality of cumulative evidence

    Resonant Absorption as Mode Conversion?

    Full text link
    Resonant absorption and mode conversion are both extensively studied mechanisms for wave "absorption" in solar magnetohydrodynamics (MHD). But are they really distinct? We re-examine a well-known simple resonant absorption model in a cold MHD plasma that places the resonance inside an evanescent region. The normal mode solutions display the standard singular resonant features. However, these same normal modes may be used to construct a ray bundle which very clearly undergoes mode conversion to an Alfv\'en wave with no singularities. We therefore conclude that resonant absorption and mode conversion are in fact the same thing, at least for this model problem. The prime distinguishing characteristic that determines which of the two descriptions is most natural in a given circumstance is whether the converted wave can provide a net escape of energy from the conversion/absorption region of physical space. If it cannot, it is forced to run away in wavenumber space instead, thereby generating the arbitrarily small scales in situ that we recognize as fundamental to resonant absorption and phase mixing. On the other hand, if the converted wave takes net energy way, singularities do not develop, though phase mixing may still develop with distance as the wave recedes.Comment: 23 pages, 8 figures, 2 tables; accepted by Solar Phys (July 9 2010

    Genome-wide association study of multisite chronic pain in UK Biobank

    Get PDF
    Chronic pain is highly prevalent worldwide and represents a significant socioeconomic and public health burden. Several aspects of chronic pain, for example back pain and a severity-related phenotype ‘chronic pain grade’, have been shown previously to be complex heritable traits with a polygenic component. Additional pain-related phenotypes capturing aspects of an individual’s overall sensitivity to experiencing and reporting chronic pain have also been suggested as a focus for investigation. We made use of a measure of the number of sites of chronic pain in individuals within the UK general population. This measure, termed Multisite Chronic Pain (MCP), is a complex trait and its genetic architecture has not previously been investigated. To address this, we carried out a large-scale genome-wide association study (GWAS) of MCP in ~380,000 UK Biobank participants. Our findings were consistent with MCP having a significant polygenic component, with a Single Nucleotide Polymorphism (SNP) heritability of 10.2%. In total 76 independent lead SNPs at 39 risk loci were associated with MCP. Additional gene-level association analyses identified neurogenesis, synaptic plasticity, nervous system development, cell-cycle progression and apoptosis genes as enriched for genetic association with MCP. Genetic correlations were observed between MCP and a range of psychiatric, autoimmune and anthropometric traits, including major depressive disorder (MDD), asthma and Body Mass Index (BMI). Furthermore, in Mendelian randomisation (MR) analyses a causal effect of MCP on MDD was observed. Additionally, a polygenic risk score (PRS) for MCP was found to significantly predict chronic widespread pain (pain all over the body), indicating the existence of genetic variants contributing to both of these pain phenotypes. Overall, our findings support the proposition that chronic pain involves a strong nervous system component with implications for our understanding of the physiology of chronic pain. These discoveries may also inform the future development of novel treatment approaches
    corecore