14,955 research outputs found
A New Class of Multiple-rate Codes Based on Block Markov Superposition Transmission
Hadamard transform~(HT) as over the binary field provides a natural way to
implement multiple-rate codes~(referred to as {\em HT-coset codes}), where the
code length is fixed but the code dimension can be varied from
to by adjusting the set of frozen bits. The HT-coset codes, including
Reed-Muller~(RM) codes and polar codes as typical examples, can share a pair of
encoder and decoder with implementation complexity of order .
However, to guarantee that all codes with designated rates perform well,
HT-coset coding usually requires a sufficiently large code length, which in
turn causes difficulties in the determination of which bits are better for
being frozen. In this paper, we propose to transmit short HT-coset codes in the
so-called block Markov superposition transmission~(BMST) manner. At the
transmitter, signals are spatially coupled via superposition, resulting in long
codes. At the receiver, these coupled signals are recovered by a sliding-window
iterative soft successive cancellation decoding algorithm. Most importantly,
the performance around or below the bit-error-rate~(BER) of can be
predicted by a simple genie-aided lower bound. Both these bounds and simulation
results show that the BMST of short HT-coset codes performs well~(within one dB
away from the corresponding Shannon limits) in a wide range of code rates
Accessible Capacity of Secondary Users
A new problem formulation is presented for the Gaussian interference channels
(GIFC) with two pairs of users, which are distinguished as primary users and
secondary users, respectively. The primary users employ a pair of encoder and
decoder that were originally designed to satisfy a given error performance
requirement under the assumption that no interference exists from other users.
In the scenario when the secondary users attempt to access the same medium, we
are interested in the maximum transmission rate (defined as {\em accessible
capacity}) at which secondary users can communicate reliably without affecting
the error performance requirement by the primary users under the constraint
that the primary encoder (not the decoder) is kept unchanged. By modeling the
primary encoder as a generalized trellis code (GTC), we are then able to treat
the secondary link and the cross link from the secondary transmitter to the
primary receiver as finite state channels (FSCs). Based on this, upper and
lower bounds on the accessible capacity are derived. The impact of the error
performance requirement by the primary users on the accessible capacity is
analyzed by using the concept of interference margin. In the case of
non-trivial interference margin, the secondary message is split into common and
private parts and then encoded by superposition coding, which delivers a lower
bound on the accessible capacity. For some special cases, these bounds can be
computed numerically by using the BCJR algorithm. Numerical results are also
provided to gain insight into the impacts of the GTC and the error performance
requirement on the accessible capacity.Comment: 42 pages, 12 figures, 2 tables; Submitted to IEEE Transactions on
Information Theory on December, 2010, Revised on November, 201
- β¦