3,673 research outputs found

    Charging damage in floating metal-insulator-metal capacitors

    Get PDF
    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage potential and the ratio of the area of the exposed antennas connected to the plates of the MIMC. This function allows anticipation of damage in MIMC devices with long interconnects. The source of the damage is still the subject of further investigatio

    Plasma damage in floating metal-insulator-metal capacitors

    Get PDF
    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage potential and the ratio of the area of the exposed antennas connected to the plates of the MIMC. This function allows anticipation of damage in MIMCs with long interconnect

    Vision Ă  long terme - Mer du Nord 2050

    Get PDF

    Beleidsverklaring 2017 Noordzee

    Get PDF

    Nematic cells with defect-patterned alignment layers

    Full text link
    Using Monte Carlo simulations of the Lebwohl--Lasher model we study the director ordering in a nematic cell where the top and bottom surfaces are patterned with a lattice of ±1\pm 1 point topological defects of lattice spacing aa. We find that the nematic order depends crucially on the ratio of the height of the cell HH to aa. When H/a≳0.9H/a \gtrsim 0.9 the system is very well--ordered and the frustration induced by the lattice of defects is relieved by a network of half--integer defect lines which emerge from the point defects and hug the top and bottom surfaces of the cell. When H/aâ‰Č0.9H/a \lesssim 0.9 the system is disordered and the half--integer defect lines thread through the cell joining point defects on the top and bottom surfaces. We present a simple physical argument in terms of the length of the defect lines to explain these results. To facilitate eventual comparison with experimental systems we also simulate optical textures and study the switching behavior in the presence of an electric field

    Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A*

    Get PDF
    We report here the detection of circular polarization in the Galactic Center black hole candidate, Sagittarius A*. The detection was made at 4.8 GHz and 8.4 GHz with the Very Large Array. We find that the fractional circular polarization at 4.8 GHz is mc=−0.36±0.05m_c=-0.36 \pm 0.05% and that the spectral index of the circular polarization is α=−0.6±0.3\alpha=-0.6 \pm 0.3 (mc∝Μαm_c \propto \nu^{\alpha}). The systematic error in mcm_c is less than 0.04% at both frequencies. In light of our recent lower limits on the linear polarization in Sgr A*, this detection is difficult to interpret with standard models. We consider briefly whether scattering mechanisms could produce the observed polarization. Detailed modeling of the source and the scattering medium is necessary. We propose a simple model in which low energy electrons reduce linear polarization through Faraday depolarization and convert linear polarization into circular polarization. Circular polarization may represent a significant new parameter for studying the obscured centimeter wavelength radio source in Sgr A*.Comment: ApJL accepted, 11 pages including 1 figur

    Radio-wave propagation through a medium containing electron-density fluctuations described by an anisotropic Goldreich-Sridhar spectrum

    Full text link
    We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulas for the wave phase structure function, visibility, angular broadening, diffraction-pattern length scales, and scintillation time scale for arbitrary distributions of turbulence along the line of sight, and specialize these formulas to idealized cases.Comment: 25 pages, 3 figures, submitted to Ap

    Green Bank Telescope Observations of the Eclipse of Pulsar "A" in the Double Pulsar Binary PSR J0737-3039

    Full text link
    We report on the first Green Bank Telescope observations at 427, 820 and 1400 MHz of the newly discovered, highly inclined and relativistic double pulsar binary. We focus on the brief eclipse of PSR J0737-3039A, the faster pulsar, when it passes behind PSR J0737-3039B. We measure a frequency-averaged eclipse duration of 26.6 +/- 0.6 s, or 0.00301 +/- 0.00008 in orbital phase. The eclipse duration is found to be significantly dependent on radio frequency, with eclipses longer at lower frequencies. Specifically, eclipse duration is well fit by a linear function having slope (-4.52 +/- 0.03) x 10^{-7} orbits/MHz. We also detect significant asymmetry in the eclipse. Eclipse ingress takes 3.51 +/- 0.99 times longer than egress, independent of radio frequency. Additionally, the eclipse lasts (40 +/- 7) x 10^{-5} in orbital phase longer after conjunction, also independent of frequency. We detect significant emission from the pulsar on short time scales during eclipse in some orbits. We discuss these results in the context of a model in which the eclipsing material is a shock-heated plasma layer within the slower PSR J0737-3039B's light cylinder, where the relativistic pressure of the faster pulsar's wind confines the magnetosphere of the slower pulsar.Comment: 12 pages, 3 figure
    • 

    corecore