481 research outputs found
A near-infrared and optical photometric study of the Sculptor dwarf spheroidal galaxy: implications for the metallicity spread
We present here a detailed study of the Sculptor dSph galaxy red giant branch
(RGB) and horizontal branch (HB) morphology, combining new near-infrared
photometry from CIRSI, with optical data from the ESO WFI. For a Sculptor-like
old and generally metal-poor system, the position of RGB stars on the
colour-magnitude diagram is mainly metallicity dependent. The advantage of
using optical-NIR colours is that the position of the RGB locus is much more
sensitive to metallicity than with optical colours alone. In contrast the
horizontal branch (HB) morphology is strongly dependent on both metallicity and
age. Therefore a detailed study of both the RGB in optical-NIR colours and the
HB can help break the age-metallicity degeneracy. Our measured photometric
width of the Sculptor giant branch corresponds to a range in metallicity of
0.75 dex. We detect the RGB and AGB bumps in both the NIR and optical
luminosity functions, and derive from them a mean metallicity of [M/H] = -1.3
+/- 0.1. From isochrone fitting we derive a mean metallicity of [Fe/H] = -1.42
with a dispersion of 0.2 dex. These photometric estimators are for the first
time consistent with individual metallicity measurements derived from
spectroscopic observations. No spatial gradient is detected in the RGB
morphology within a radius of 13 arcmin, twice the core radius. On the other
hand, a significant gradient is observed in the HB morphology index, confirming
the `second parameter problem' present in this galaxy. These observations are
consistent with an early extended period of star formation continuing in time
for a few Gyr. (Abridged)Comment: 9 pages, 10 figures. Accepted for publication in MNRA
A new look at the kinematics of the bulge from an N-body model
(Abridged) By using an N-body simulation of a bulge that was formed via a bar
instability mechanism, we analyse the imprints of the initial (i.e. before bar
formation) location of stars on the bulge kinematics, in particular on the
heliocentric radial velocity distribution of bulge stars. Four different
latitudes were considered: , , , and
, along the bulge minor axis as well as outside it, at
and . The bulge X-shaped structure comprises
stars that formed in the disk at different locations. Stars formed in the outer
disk, beyond the end of the bar, which are part of the boxy peanut-bulge
structure may show peaks in the velocity distributions at positive and negative
heliocentric radial velocities with high absolute values that can be larger
than 100 , depending on the observed direction. In some
cases the structure of the velocity field is more complex and several peaks are
observed. Stars formed in the inner disk, the most numerous, contribute
predominantly to the X-shaped structure and present different kinematic
characteristics. Our results may enable us to interpret the cold high-velocity
peak observed in the APOGEE commissioning data, as well as the excess of
high-velocity stars in the near and far arms of the X-shaped structure at
= and =. When compared with real data, the kinematic
picture becomes more complex due to the possible presence in the observed
samples of classical bulge and/or thick disk stars. Overall, our results point
to the existence of complex patterns and structures in the bulge velocity
fields, which are generated by the bar. This suggests that caution should be
used when interpreting the bulge kinematics: the presence of substructures,
peaks and clumps in the velocity fields is not necessarily a sign of past
accretion events.Comment: 21 pages, 18 figures. Accepted for publication in A&
Observational Hertzsprung-Russell diagrams
Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented. Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.Peer reviewe
The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude
High resolution (R22,500) spectra for 400 red clump giants, in four
fields within and , were obtained within the GIRAFFE
Inner Bulge Survey (GIBS) project. To this sample we added another 400
stars in Baade's Window, observed with the identical instrumental
configuration. We constructed the metallicity distributions for the entire
sample, as well as for each field individually, in order to investigate the
presence of gradients or field-to-field variations in the shape of the
distributions. The metallicity distributions in the five fields are consistent
with being drawn from a single parent population, indicating the absence of a
gradient along the major axis of the Galactic bar. The global metallicity
distribution is well fitted by two Gaussians. The metal poor component is
rather broad, with a mean at dex and dex.
The metal-rich one is narrower, with mean and
dex. The [Mg/Fe] ratio follows a tight trend with [Fe/H], with enhancement with
respect to solar in the metal-poor regime, similar to the one observed for
giant stars in the local thick disc. [Ca/Fe] abundances follow a similar trend,
but with a considerably larger scatter than [Mg/Fe]. A decrease in [Mg/Fe] is
observed at dex. This \textit{knee} is in agreement with our
previous bulge study of K-giants along the minor axis, but is 0.1 dex lower in
metallicity than the one reported for the Bulge micro lensed dwarf and
sub-giant stars. We found no variation in -element abundance
distributions between different fields.Comment: Accepted for publication in A&
Gaia Data Release 3: Catalogue validation
[Abstract]: Context. The third Gaia data release (DR3) provides a wealth of new data products. The early part of the release, Gaia EDR3, already provided the astrometric and photometric data for nearly two billion sources. The full release now adds improved parameters compared to Gaia DR2 for radial velocities, astrophysical parameters, variability information, light curves, and orbits for Solar System objects. The improvements are in terms of the number of sources, the variety of parameter information, precision, and accuracy. For the first time, Gaia DR3 also provides a sample of spectrophotometry and spectra obtained with the Radial Velocity Spectrometer, binary star solutions, and a characterisation of extragalactic object candidates. Aims. Before the publication of the catalogue, these data have undergone a dedicated transversal validation process. The aim of this paper is to highlight limitations of the data that were found during this process and to provide recommendations for the usage of the catalogue. Methods. The validation was obtained through a statistical analysis of the data, a confirmation of the internal consistency of different products, and a comparison of the values to external data or models. Results. Gaia DR3 is a new major step forward in terms of the number, diversity, precision, and accuracy of the Gaia products. As always in such a large and complex catalogue, however, issues and limitations have also been found. Detailed examples of the scientific quality of the Gaia DR3 release can be found in the accompanying data-processing papers as well as in the performance verification papers. Here we focus only on the caveats that the user should be aware of to scientifically exploit the data.This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia . The Gaia archive website is https://archives.esac.esa.int/gaia . This work has made an extensive use of Aladin and the SIMBAD, VizieR databases operated at the Centre de DonnĂ©es Astronomiques (Strasbourg) in France and of the software TOPCAT (Taylor 2005). This work has been supported by the Agence Nationale de la Recherche (ANR project SEGAL ANR-19-CE31-0017). It has also received funding from the project ANR-18-CE31-0006 and from the European Research Council (ERC grant agreement No. 834148). ZKR acknowledges funding from the Netherlands Research School for Astronomy (NOVA). This work was partially funded by the Spanish MICIN/AEI/10.13039/501100011033 and by âERDF A way of making Europeâ by the âEuropean Unionâ through grant RTI2018-095076-B-C21, and the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia âMarĂa de Maeztuâ) through grant CEX2019-000918-M.France. Agence Nationale de la Recherche; ANR-19-CE31-0017France. Agence Nationale de la Recherche; ANR-18-CE31-00
The GIRAFFE Inner Bulge Survey (GIBS). I. Survey Description and a kinematical map of the Milky Way bulge
The Galactic bulge is a massive, old component of the Milky Way. It is known
to host a bar, and it has recently been demonstrated to have a pronounced
boxy/peanut structure in its outer region. Several independent studies suggest
the presence of more than one stellar populations in the bulge, with different
origins and a relative fraction changing across the bulge area. This is the
first of a series of papers presenting the results of the Giraffe Inner Bulge
Survey, carried out at the ESO-VLT with the multifibre spectrograph FLAMES.
Spectra of ~5000 red clump giants in 24 bulge fields have been obtained at
resolution R=6500, in the infrared Calcium triplet wavelength region at 8500
{\AA}. They are used to derive radial velocities and metallicities, based on
new calibration specifically devised for this project. Radial velocities for
another ~1200 bulge red clump giants, obtained from similar archive data, have
been added to the sample. Higher resolution spectra have been obtained for 450
additional stars at latitude b=-3.5, with the aim of investigating chemical
abundance patterns variations with longitude, across the inner bulge. In total
we present here radial velocities for 6392 RC stars. We derive a radial
velocity, and velocity dispersion map of the Milky Way bulge, useful to be
compared with similar maps of external bulges, and to infer the expected
velocities and dispersion at any line of sight. The K-type giants kinematics is
consistent with the cylindrical rotation pattern of M-giants from the BRAVA
survey. Our sample enables to extend this result to latitude b=-2, closer to
the Galactic plane than probed by previous surveys. Finally, we find strong
evidence for a velocity dispersion peak at (0,-1) and (0,-2), possibly
indicative of a high density peak in the central 250 pc of the bulgeComment: A&A in pres
Gaia Data Release 3: Stellar multiplicity, a teaser for the hidden treasure
Context. The Gaia DR3 catalogue contains, for the first time, about 800 000 solutions with either orbital elements or trend parameters for astrometric, spectroscopic, and eclipsing binaries, and combinations of these three. Aims. With this paper, we aim to illustrate the huge potential of this large non-single-star catalogue. Methods. Using the orbital solutions and models of the binaries, we have built a catalogue of tens of thousands of stellar masses or lower limits thereof, some with consistent flux ratios. Properties concerning the completeness of the binary catalogues are discussed, statistical features of the orbital elements are explained, and a comparison with other catalogues is performed. Results. Illustrative applications are proposed for binaries across the Hertzsprung-Russell Diagram (HRD). Binarity is studied in the giant branch and a search for genuine spectroscopic binaries among long-period variables is performed. The discovery of new EL CVn systems illustrates the potential of combining variability and binarity catalogues. Potential compact object companions are presented, mainly white dwarf companions or double degenerates, but one candidate neutron star is also found. Towards the bottom of the main sequence, the orbits of previously suspected binary ultracool dwarfs are determined and new candidate binaries are discovered. The long awaited contribution of Gaia to the analysis of the substellar regime shows the brown dwarf desert around solar-type stars using true rather than minimum masses, and provides new important constraints on the occurrence rates of substellar companions to M dwarfs. Several dozen new exoplanets are proposed, including two with validated orbital solutions and one super-Jupiter orbiting a white dwarf, all being candidates requiring confirmation. Besides binarity, higher order multiple systems are also found. Conclusions. By increasing the number of known binary orbits by more than one order of magnitude, Gaia DR3 will provide a rich reservoir of dynamical masses and an important contribution to the analysis of stellar multiplicity
Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants
We obtained FLAMES-GIRAFFE spectra (R=22,500) at the ESO Very Large Telescope
for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to
measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant
stars observed in 3 fields along the minor axis of the Galactic bulge and at
latitudes b=-4, b=-6, b=-12. Another 176 stars belong to a field containing the
globular cluster NGC 6553, located at b=-3 and 5 degrees away from the other
three fields along the major axis. Our results confirm, with large number
statistics, the chemical similarity between the Galactic bulge and thick disk,
which are both enhanced in alpha elements when compared to the thin disk. In
the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different
bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b=-4
disappear at higher Galactic latitudes in agreement with the observed
metallicity gradient in the bulge. Metal-poor stars ([Fe/H]<-0.2) show a
remarkable homogeneity at different bulge locations. We have obtained further
constrains for the formation scenario of the Galactic bulge. A metal-poor
component chemically indistinguishable from the thick disk hints for a fast and
early formation for both the bulge and the thick disk. Such a component shows
no variation, neither in abundances nor kinematics, among different bulge
regions. A metal-rich component showing low [alpha/Fe] similar to those of the
thin disk disappears at larger latitudes. This allows us to trace a component
formed through fast early mergers (classical bulge) and a disk/bar component
formed on a more extended timescale.Comment: 13 pages, 17 figures. Accepted for publication in Astronomy and
Astrophysic
Chemical Composition of Extremely Metal-Poor Stars in the Sextans Dwarf Spheroidal Galaxy
Chemical abundances of six extremely metal-poor ([Fe/H]<-2.5) stars in the
Sextans dwarf spheroidal galaxy are determined based on high resolution
spectroscopy (R=40,000) with the Subaru Telescope High Dispersion Spectrograph.
(1) The Fe abundances derived from the high resolution spectra are in good
agreement with the metallicity estimated from the Ca triplet lines in low
resolution spectra. The lack of stars with [Fe/H]=<-3 in Sextans, found by
previous estimates from the Ca triplet, is confirmed by our measurements,
although we note that high resolution spectroscopy for a larger sample of stars
will be necessary to estimate the true fraction of stars with such low
metallicity. (2) While one object shows an overabundance of Mg (similar to
Galactic halo stars), the Mg/Fe ratios of the remaining five stars are similar
to the solar value. This is the first time that low Mg/Fe ratios at such low
metallicities have been found in a dwarf spheroidal galaxy. No evidence for
over-abundances of Ca and Ti are found in these five stars, though the
measurements for these elements are less certain. Possible mechanisms to
produce low Mg/Fe ratios, with respect to that of Galactic halo stars, are
discussed. (3) Ba is under-abundant in four objects, while the remaining two
stars exhibit large and moderate excesses of this element. The abundance
distribution of Ba in this galaxy is similar to that in the Galactic halo,
indicating that the enrichment of heavy elements, probably by the r-process,
started at metallicities [Fe/H] < -2.5, as found in the Galactic halo.Comment: 15 pages, 6 figures, 6 tables, A&A, in pres
A southern hemisphere survey of the 5780 and 6284 {\AA} diffuse interstellar bands: correlation with the extinction
We present a new database of 5780.5 and 6283.8 {\AA} DIB measurements and
also study their correlation with the reddening. The database is based on
high-resolution, high-quality spectra of early-type nearby stars located in the
southern hemisphere at an average distance of 300 pc. Equivalent widths of the
two DIBs were determined by means of a realistic continuum fitting and
synthetic atmospheric transmissions. For all stars that possess a precise
measurement of their color excess, we compare the DIBs and the extinction. We
find average linear relationships of the DIBS and the color excess that agree
well with those of a previous survey of northern hemisphere stars closer than
550 pc. This similarity shows that there is no significant spatial dependence
of the average relationship in the solar neighborhood within 600 pc. A
noticeably different result is our higher degree of correlation of the two DIBs
with the extinction. We demonstrate that it is simply due to the lower
temperature and intrinsic luminosity of our targets. Using cooler target stars
reduces the number of outliers, especially for nearby stars, confirming that
the radiation field of UV bright stars has a significant influence on the DIB
strength. We have used the cleanest data to compute updated DIB shapes.Comment: Astronomy & Astrophysics (in press
- âŠ