42 research outputs found

    Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia.</p> <p>Methods</p> <p>We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia.</p> <p>Results</p> <p>The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of <sup>S2448</sup>p-mTOR (100%, p = 0.05), <sup>T389</sup>p-S6K (100%, p = 0.02 and <sup>S235/236</sup>p-S6 (86%, p = 0.005). Additionally, <sup>T389</sup>p-S6K correlated with <sup>S727</sup>p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of <sup>S276</sup>p-NFκB (100%, p = 0.05) and <sup>S9</sup>p-GSK3β (100%, p = 0.05). High levels of PKBβ/AKT2, EGFR, as well as nuclear <sup>T202/Y204</sup>p-ERK and <sup>T180/Y182</sup>p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas.</p> <p>Conclusion</p> <p>Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.</p

    Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is strong and consistent evidence that oxidative stress is crucially involved in the development of atherosclerotic vascular disease. Overproduction of reactive oxygen species (ROS) in mitochondria is an unifying mechanism that underlies micro- and macrovascular atherosclerotic disease. Given the central role of mitochondria in energy and ROS production, mitochondrial DNA (mtDNA) is an obvious candidate for genetic susceptibility studies on atherosclerotic processes. We therefore examined the association between mtDNA haplogroups and coronary artery disease (CAD) as well as diabetic retinopathy.</p> <p>Methods</p> <p>This study of Middle European Caucasians included patients with angiographically documented CAD (n = 487), subjects with type 2 diabetes mellitus with (n = 149) or without (n = 78) diabetic retinopathy and control subjects without clinical manifestations of atherosclerotic disease (n = 1527). MtDNA haplotyping was performed using multiplex PCR and subsequent multiplex primer extension analysis for determination of the major European haplogroups. Haplogroup frequencies of patients were compared to those of control subjects without clinical manifestations of atherosclerotic disease.</p> <p>Results</p> <p>Haplogroup T was significantly more prevalent among patients with CAD than among control subjects (14.8% vs 8.3%; p = 0.002). In patients with type 2 diabetes, the presence of diabetic retinopathy was also significantly associated with a higher prevalence of haplogroup T (12.1% vs 5.1%; p = 0.046).</p> <p>Conclusion</p> <p>Our data indicate that the mtDNA haplogroup T is associated with CAD and diabetic retinopathy in Middle European Caucasian populations.</p
    corecore