11 research outputs found

    Chronic Exposure to the Herbicide, Atrazine, Causes Mitochondrial Dysfunction and Insulin Resistance

    Get PDF
    There is an apparent overlap between areas in the USA where the herbicide, atrazine (ATZ), is heavily used and obesity-prevalence maps of people with a BMI over 30. Given that herbicides act on photosystem II of the thylakoid membrane of chloroplasts, which have a functional structure similar to mitochondria, we investigated whether chronic exposure to low concentrations of ATZ might cause obesity or insulin resistance by damaging mitochondrial function. Sprague-Dawley rats (n = 48) were treated for 5 months with low concentrations (30 or 300 µg kg−1 day−1) of ATZ provided in drinking water. One group of animals was fed a regular diet for the entire period, and another group of animals was fed a high-fat diet (40% fat) for 2 months after 3 months of regular diet. Various parameters of insulin resistance were measured. Morphology and functional activities of mitochondria were evaluated in tissues of ATZ-exposed animals and in isolated mitochondria. Chronic administration of ATZ decreased basal metabolic rate, and increased body weight, intra-abdominal fat and insulin resistance without changing food intake or physical activity level. A high-fat diet further exacerbated insulin resistance and obesity. Mitochondria in skeletal muscle and liver of ATZ-treated rats were swollen with disrupted cristae. ATZ blocked the activities of oxidative phosphorylation complexes I and III, resulting in decreased oxygen consumption. It also suppressed the insulin-mediated phosphorylation of Akt. These results suggest that long-term exposure to the herbicide ATZ might contribute to the development of insulin resistance and obesity, particularly where a high-fat diet is prevalent

    N2 fixation and cycling in Alnus glutinosa, Betula pendula and Fagus sylvatica woodland exposed to free air CO2 enrichment

    Get PDF
    We measured the effect of elevated atmospheric CO2 on atmospheric nitrogen (N2) fixation in the tree species Alnus glutinosa growing in monoculture or in mixture with the non-N2-fixing tree species Betula pendula and Fagus sylvatica. We addressed the hypotheses that (1) N2 fixation in A. glutinosa will increase in response to increased atmospheric CO2 concentrations, when growing in monoculture, (2) the impact of elevated CO2 on N2 fixation in A. glutinosa is the same in mixture and in monoculture and (3) the impacts of elevated CO2 on N cycling will be evident by a decrease in leaf δ15N and by the soil-leaf enrichment factor (EF), and that these impacts will not differ between mixed and single species stands. Trees were grown in a forest plantation on former agricultural fields for four growing seasons, after which the trees were on average 3.8 m tall and canopy closure had occurred. Atmospheric CO2 concentrations were maintained at either ambient or elevated (by 200 ppm) concentrations using a free-air CO2 enrichment (FACE) system. Leaf δ15N was measured and used to estimate the amount (Ndfa) and proportion (%Ndfa) of N derived from atmospheric fixation. On average, 62% of the N in A. glutinosa leaves was from fixation. The %Ndfa and Ndfa for A. glutinosa trees in monoculture did not increase under elevated CO2, despite higher growth rates. However, N2 fixation did increase for trees growing in mixture, despite the absence of significant growth stimulation. There was evidence that fixed N2 was transferred from A. glutinosa to F. sylvatica and B. pendula, but no evidence that this affected their CO2 response. The results of this study show that N2 fixation in A. glutinosa may be higher in a future elevated CO2 world, but that this effect will only occur where the trees are growing in mixed species stands

    Individual differences and personalized learning: a review and appraisal

    No full text
    corecore