37 research outputs found

    Effect of sucralfate on components of mucosal barrier produced by cultured canine epithelial cells in vitro

    Full text link
    The mucous gel maintains a neutral microclimate at the epithelial cell surface, which may play a role in both the prevention of gastroduodenal injury and the provision of an environment essential for epithelial restitution and regeneration after injury. Enhancement of the components of the mucous barrier by sucralfate may explain its therapeutic efficacy for upper gastrointestinal tract protection, repai, and healing. We studied the effect of sucralfate and its major soluble component, sucrose octasulfate (SOS), on the synthesis and release of gastric mucin and surface active phospholipid, utilizing an isolated canine gastric mucous cells in culture. We correlated these results with the effect of the agents on mucin synthesis and secretion utilizing explants of canine fundus in vitro . Sucralfate and SOS significantly stimulated phospholipid secretion by isolated canine mucous cells in culture (123% and 112% of control, respectively.) Indomethacin pretreatment siginificantly inhibited the effect of sucralfate, but not SOS, on the stimulation of phospholipid release. Administration of either sucralfate or SOS to the isolated canine mucous cells had no effect upon mucin synthesis or secretion using a sensitive immunoassay. Sucralfate and SOS did not stimulate mucin release in the canine explants; sucralfate significantly stimulated the synthesis of mucin, but only to 108% of that observed in untreated explants. No increase in PGE 2 release was observed after sucralfate or SOS exposure to the isolated canine mucous cells. Our results suggest sucralfate affects the mucus barrier largely in a qualitative manner. No increase in mucin secretion or major effect on synthesis was notd, although a significant increase in surface active phospholipid release was observed. The lack of dose dependency of this effect, along with the results of the PGE 2 assay, suggests the drug may act through a non-receptor-mediated mechanism to perturb the cell membrane and release surface active phospholipid. The enhancement of phospholipid release by sucralfate to augment the barrier function of gastric mucus may, in concert with other effects of the drug, strrengthen mucosal barrier function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44415/1/10620_2005_Article_BF01308079.pd

    CCAAT/Enhancer Binding Protein alpha uses distinct domains to prolong pituitary cells in the Growth 1 and DNA Synthesis phases of the cell cycle

    Get PDF
    BACKGROUND: A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPα) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPα regulates the transcription of a key metabolic regulator, growth hormone. RESULTS: We examined the consequences of C/EBPα expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPα. Ectopic expression of C/EBPα in the progenitor cells resulted in prolongation of both growth 1 (G1) and the DNA synthesis (S) phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPα were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPα remained competent for G1 and S phase prolongation. C/EBPα deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPα in prolonging G1 and S. CONCLUSION: We found that C/EBPα utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPα remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPα transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPα to regulate gene expression independently of its effects on proliferation

    Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

    Get PDF
    Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis
    corecore