25 research outputs found

    A randomized trial of an intervention to improve use and adherence to effective coronary heart disease prevention strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficacious strategies for the primary prevention of coronary heart disease (CHD) are underused, and, when used, have low adherence. Existing efforts to improve use and adherence to these efficacious strategies have been so intensive that they are impractical for clinical practice.</p> <p>Methods</p> <p>We conducted a randomized trial of a CHD prevention intervention (including a computerized decision aid and automated tailored adherence messages) at one university general internal medicine practice. After obtaining informed consent and collecting baseline data, we randomized patients (men and women age 40-79 with no prior history of cardiovascular disease) to either the intervention or usual care. We then saw them for two additional study visits over 3 months. For intervention participants, we administered the decision aid at the primary study visit (1 week after baseline visit) and then mailed 3 tailored adherence reminders at 2, 4, and 6 weeks. We assessed our outcomes (including the predicted likelihood of angina, myocardial infarction, and CHD death over 10 years (CHD risk) and self-reported adherence) between groups at 3 month follow-up. Data collection occurred from June 2007 through December 2009. All study procedures were IRB approved.</p> <p>Results</p> <p>We randomized 160 eligible patients (81 intervention; 79 control) and followed 96% to study conclusion. Mean predicted CHD risk at baseline was 11.3%. The intervention increased self-reported adherence to chosen risk reducing strategies by 25 percentage points (95% CI 8% to 42%), with the biggest effect for aspirin. It also changed predicted CHD risk by -1.1% (95% CI -0.16% to -2%), with a larger effect in a pre-specified subgroup of high risk patients.</p> <p>Conclusion</p> <p>A computerized intervention that involves patients in CHD decision making and supports adherence to effective prevention strategies can improve adherence and reduce predicted CHD risk.</p> <p>Clinical trials registration number</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00494052">NCT00494052</a></p

    Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia

    Get PDF
    Growth factor Neuregulin 1 (NRG1) plays an essential role in development and organization of the cerebral cortex. NRG1 and its receptors, ERBB3 and ERBB4, have been implicated in genetic susceptibility for schizophrenia. Disease symptoms include asociality and altered social interaction. To investigate the role of NRG1-ERBB signaling in social behavior, mice heterozygous for an Nrg1 null allele (Nrg1+/−), and mice with conditional ablation of Erbb3 or Erbb4 in the central nervous system, were evaluated for sociability and social novelty preference in a three-chambered choice task. Results showed that deficiencies in NRG1 or ERBB3 significantly enhanced sociability. All of the mutant groups demonstrated a lack of social novelty preference, in contrast to their respective wild-type controls. Effects of NRG1, ERBB3, or ERBB4 deficiency on social behavior could not be attributed to general changes in anxiety-like behavior, activity, or loss of olfactory ability. Nrg1+/− pups did not exhibit changes in isolation-induced ultrasonic vocalizations, a measure of emotional reactivity. Overall, these findings provide evidence that social behavior is mediated by NRG1-ERBB signaling

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain
    corecore