37 research outputs found

    A methodology for parameter estimation in seaweed productivity modelling

    Get PDF
    This paper presents a combined approach for parameter estimation in models of primary production. The focus is on gross primary production and nutrient assimilation by seaweeds. A database of productivity determinations, biomass and mortality measurements and nutrient uptake rates obtained over one year for Gelidium sesquipedale in the Atlantic Ocean off Portugal has been used. Annual productivity was estimated by harvesting methods, and empirical relationships using mortality/ wave energy and respiration rates have been derived to correct for losses and to convert the estimates to gross production. In situ determinations of productivity have been combined with data on the light climate (radiation periods, intensity, mean turbidity) to give daily and annual productivity estimates. The theoretical nutrient uptake calculated using a 'Redfield ratio' approach and determinations of in situ N and P consumption by the algae during incubation periods have also been compared. The results of the biomass difference and incubation approaches are discussed in order to assess the utility of coefficients determined in situ for parameter estimation in seaweed production models

    Profiling the transcriptome of Gracilaria changii (Rhodophyta) in response to light deprivation

    Get PDF
    Light regulates photosynthesis, growth and reproduction, yield and properties of phycocolloids, and starch contents in seaweeds. Despite its importance as an environmental cue that regulates many developmental, physiological, and biochemical processes, the network of genes involved during light deprivation are obscure. In this study, we profiled the transcriptome of Gracilaria changii at two different irradiance levels using a cDNA microarray containing more than 3,000 cDNA probes. Microarray analysis revealed that 93 and 105 genes were up- and down-regulated more than 3-fold under light deprivation, respectively. However, only 50% of the transcripts have significant matches to the nonredundant peptide sequences in the database. The transcripts that accumulated under light deprivation include vanadium chloroperoxidase, thioredoxin, ferredoxin component, and reduced nicotinamide adenine dinucleotide dehydrogenase. Among the genes that were down-regulated under light deprivation were genes encoding light harvesting protein, light harvesting complex I, phycobilisome 7.8 kDa linker polypeptide, low molecular weight early light-inducible protein, and vanadium bromoperoxidase. Our findings also provided important clues to the functions of many unknown sequences that could not be annotated using sequence comparison

    Waterborne microbial risk assessment : a population-based dose-response function for Giardia spp. (E.MI.R.A study)

    Get PDF
    BACKGROUND: Dose-response parameters based on clinical challenges are frequently used to assess the health impact of protozoa in drinking water. We compare the risk estimates associated with Giardia in drinking water derived from the dose-response parameter published in the literature and the incidence of acute digestive conditions (ADC) measured in the framework of an epidemiological study in a general population. METHODS: The study combined a daily follow-up of digestive morbidity among a panel of 544 volunteers and a microbiological surveillance of tap water. The relationship between incidence of ADC and concentrations of Giardia cysts was modeled with Generalized Estimating Equations, adjusting on community, age, tap water intake, presence of bacterial indicators, and genetic markers of viruses. The quantitative estimate of Giardia dose was the product of the declared amount of drinking water intake (in L) by the logarithm of cysts concentrations. RESULTS: The Odds Ratio for one unit of dose [OR = 1.76 (95% CI: 1.21, 2.55)] showed a very good consistency with the risk assessment estimate computed after the literature dose-response, provided application of a 20 % abatement factor to the cysts counts that were measured in the epidemiological study. Doing so, a daily water intake of 2 L and a Giardia concentration of 10 cysts/100 L, would yield an estimated relative excess risk of 12 % according to the Rendtorff model, against 11 % when multiplying the baseline rate of ADC by the corresponding OR. This abatement parameter encompasses uncertainties associated with germ viability, infectivity and virulence in natural settings. CONCLUSION: The dose-response function for waterborne Giardia risk derived from clinical experiments is consistent with epidemiological data. However, much remains to be learned about key characteristics that may heavily influence quantitative risk assessment results
    corecore