6,453 research outputs found
Therapeutic Massage Provides Pain Relief to a Client with Morton’s Neuroma: A Case Report
Background: Morton’s neuroma is a common cause of pain that radiates from between the third and fourth metatarsals and which, when symptomatic, creates sensations of burning or sharp pain and numbness on the forefoot. Many conservative and surgical interventions are employed to reduce associated pain, but not enough research has been conducted to recommend patients to any one approach as the most reliable source of pain management.
Purpose: The objective of this case report is to describe the effect of massage therapy on one woman with symptomatic Morton’s neuroma.
Participant: A physically active 25-year-old female with diagnosed symptomatic Morton’s neuroma who has not found relief with previous conservative intervention.
Intervention: Six session of massage therapy once weekly for 60–75 minutes focused on postural alignment and localized foot and leg treatment. The client also completed an at-home exercise each day. Change was monitored each week by the massage therapist reassessing posture and by the client filling out a pain survey based on a Visual Analog Scale.
Results: The client reported progressive change in the character of the pain from burning and stabbing before the first session to a dull, pulsing sensation after the third session. She also recorded a reduction in pain during exercise from a 5/10 to 0/10 (on a scale where 10 is extreme pain).
Conclusion: This study describes how massage therapy reduced pain from Morton’s neuroma for one client; however, larger randomized control studies need to be done in order to determine the short- and long-term effects of massage therapy on this painful condition
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
Mild Cognitive Impairment Staging Yields Genetic Susceptibility, Biomarker, and Neuroimaging Differences
INTRODUCTION: While Alzheimer’s disease (AD) is divided into severity stages, mild cognitive impairment (MCI) remains a solitary construct despite clinical and prognostic heterogeneity. This study aimed to characterize differences in genetic, cerebrospinal fluid (CSF), neuroimaging, and neuropsychological markers across clinician-derived MCI stages. METHODS: Vanderbilt Memory & Aging Project participants with MCI were categorized into 3 severity subtypes at screening based on neuropsychological assessment, functional assessment, and Clinical Dementia Rating interview, including mild (n = 18, 75 ± 8 years), moderate (n = 89 72 ± 7 years), and severe subtypes (n = 18, 78 ± 8 years). At enrollment, participants underwent neuropsychological testing, 3T brain magnetic resonance imaging (MRI), and optional fasting lumbar puncture to obtain CSF. Neuropsychological testing and MRI were repeated at 18-months, 3-years, and 5-years with a mean follow-up time of 3.3 years. Ordinary least square regressions examined cross-sectional associations between MCI severity and apolipoprotein E (APOE)-ε4 status, CSF biomarkers of amyloid beta (Aβ), phosphorylated tau, total tau, and synaptic dysfunction (neurogranin), baseline neuroimaging biomarkers, and baseline neuropsychological performance. Longitudinal associations between baseline MCI severity and neuroimaging and neuropsychological trajectory were assessed using linear mixed effects models with random intercepts and slopes and a follow-up time interaction. Analyses adjusted for baseline age, sex, race/ethnicity, education, and intracranial volume for MRI models. RESULTS: Stages differed at baseline on APOE-ε4 status (early middle = late), phosphorylated and total tau (early = middle < late; p-values < 0.05), and neurogranin concentrations (early = middle < late; p-values < 0.05). MCI stage related to greater longitudinal cognitive decline, hippocampal atrophy, and inferior lateral ventricle dilation (early < late; p-values < 0.03). DISCUSSION: Clinician staging of MCI severity yielded longitudinal cognitive trajectory and structural neuroimaging differences in regions susceptible to AD neuropathology and neurodegeneration. As expected, participants with more severe MCI symptoms at study entry had greater cognitive decline and gray matter atrophy over time. Differences are likely attributable to baseline differences in amyloidosis, tau, and synaptic dysfunction. MCI staging may provide insight into underlying pathology, prognosis, and therapeutic targets
Developing "smart" tutorial tools to assist students learn calculus, taking account of their changing preferred approaches to learning
We present the result of a small study where we investigate what types of resources current students of Mathematics and Mathematics for Engineering prefer for assisting them with their studies of those topics. We found that modern students seem to have a clear preference for on-line resources over traditional textbooks. However, there is currently a lack of good quality resources of that type which allow students to carry-out conventional mathematics exercises on-line and still get appropriate, meaningful and informative feedback on their answers. We then describe our efforts towards addressing this problem through the development of an “intelligent” tutorial system for Calculus which provides feedback tailored to the student’s responses, noting where and how they have made common errors
de Branges-Rovnyak spaces: basics and theory
For a contractive analytic operator-valued function on the unit disk
, de Branges and Rovnyak associate a Hilbert space of analytic
functions and related extension space
consisting of pairs of analytic functions on the unit disk . This
survey describes three equivalent formulations (the original geometric de
Branges-Rovnyak definition, the Toeplitz operator characterization, and the
characterization as a reproducing kernel Hilbert space) of the de
Branges-Rovnyak space , as well as its role as the underlying
Hilbert space for the modeling of completely non-isometric Hilbert-space
contraction operators. Also examined is the extension of these ideas to handle
the modeling of the more general class of completely nonunitary contraction
operators, where the more general two-component de Branges-Rovnyak model space
and associated overlapping spaces play key roles. Connections
with other function theory problems and applications are also discussed. More
recent applications to a variety of subsequent applications are given in a
companion survey article
Cell lineage transport: a mechanism for molecular gradient formation
Gradient formation is a fundamental patterning mechanism during embryo development, commonly related to secreted proteins that move along an existing field of cells. Here, we mathematically address the feasibility of gradients of mRNAs and non-secreted proteins. We show that these gradients can arise in growing tissues whereby cells dilute and transport their molecular content as they divide and grow, a mechanism we termed ‘cell lineage transport.' We provide an experimental test by unveiling a distal-to-proximal gradient of Hoxd13 in the vertebrate developing limb bud driven by cell lineage transport, corroborating our model. Our study indicates that gradients of non-secreted molecules exhibit a power-law profile and can arise for a wide range of biologically relevant parameter values. Dilution and nonlinear growth confer robustness to the spatial gradient under changes in the cell cycle period, but at the expense of sensitivity in the timing of gradient formation. We expect that gradient formation driven by cell lineage transport will provide future insights into understanding the coordination between growth and patterning during embryonic development
How early can myocardial iron overload occur in Beta thalassemia major?
BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM.
METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload.
CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old
- …