320 research outputs found
The Strange Quark Contribution to the Proton's Magnetic Moment
We report a new determination of the strange quark contribution to the
proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2
from parity-violating e-p elastic scattering. The result uses a revised
analysis of data from the SAMPLE experiment which was carried out at the
MIT-Bates Laboratory. The data are combined with a calculation of the proton's
axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +-
0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison
with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A = -4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections
Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory
Inspired by a quantum mechanical formalism to model concepts and their
disjunctions and conjunctions, we put forward in this paper a specific
hypothesis. Namely that within human thought two superposed layers can be
distinguished: (i) a layer given form by an underlying classical deterministic
process, incorporating essentially logical thought and its indeterministic
version modeled by classical probability theory; (ii) a layer given form under
influence of the totality of the surrounding conceptual landscape, where the
different concepts figure as individual entities rather than (logical)
combinations of others, with measurable quantities such as 'typicality',
'membership', 'representativeness', 'similarity', 'applicability', 'preference'
or 'utility' carrying the influences. We call the process in this second layer
'quantum conceptual thought', which is indeterministic in essence, and contains
holistic aspects, but is equally well, although very differently, organized
than logical thought. A substantial part of the 'quantum conceptual thought
process' can be modeled by quantum mechanical probabilistic and mathematical
structures. We consider examples of three specific domains of research where
the effects of the presence of quantum conceptual thought and its deviations
from classical logical thought have been noticed and studied, i.e. economics,
decision theory, and concept theories and which provide experimental evidence
for our hypothesis.Comment: 14 page
and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties
(2212) single crystal samples
were studied using transmission electron microscopy (TEM), plane
() and axis () resistivity, and high resolution
angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that
the modulation in the axis for doped 2212 is dominantly
of type that is not sensitive to the oxygen content of the system, and the
system clearly shows a structure of orthorhombic symmetry. Oxygen annealed
samples exhibit a much lower axis resistivity and a resistivity minimum at
K. He-annealed samples exhibit a much higher axis resistivity and
behavior below 300K. The Fermi surface (FS) of oxygen annealed
2212 mapped out by ARUPS has a pocket in the FS around the
point and exhibits orthorhombic symmetry. There are flat, parallel sections of
the FS, about 60\% of the maximum possible along , and about 30\%
along . The wavevectors connecting the flat sections are about
along , and about along , rather than . The symmetry of the near-Fermi-energy dispersing
states in the normal state changes between oxygen-annealed and He-annealed
samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon
request. Submitted to Phys. Rev. B
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
Effective lagrangian description of top production and decay
We propose a rather general description of residual New Physics (NP) effects
on the top quark couplings. These effects are described in terms of 20 gauge
invariant operators involving gauge and Higgs bosons as well as quarks
of the third family. We compute their implications for the , and vertices and study their observability in the process
with . We present results for
the integrated cross section, the angular distribution and various decay
distribution and polarization asymmetries for NLC energies of .
Observability limits are discussed and interpreted in terms of the NP scales
associated to each operator through the unitarity constraints. The general
landscape of the residual NP effects in the heavy quark and bosonic sectors is
also presented.Comment: 36 pages (9 figures available through email in .uu form, e-mail:
[email protected]
Measurement of the partial widths of the Z into up- and down-type quarks
Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma
decays were selected by tagging hadronic final states with isolated photon
candidates in the electromagnetic calorimeter. Combining the measured rates of
Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the
simultaneous determination of the widths of the Z into up- and down-type
quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18}
MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with
the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.
- âŠ