109 research outputs found
Repeated measures regression mixture models
Regression mixture models are one increasingly utilized approach for developing theories about and exploring the heterogeneity of effects. In this study we aimed to extend the current use of regression mixtures to a repeated regression mixture method when repeated measures, such as diary-type and experience-sampling method, data are available. We hypothesized that additional information borrowed from the repeated measures would improve the model performance, in terms of class enumeration and accuracy of the parameter estimates. We specifically compared three types of model specifications in regression mixtures: (a) traditional single-outcome model; (b) repeated measures models with three, five, and seven measures; and (c) a single-outcome model with the average of seven repeated measures. The results showed that the repeated measures regression mixture models substantially outperformed the traditional and average single-outcome models in class enumeration, with less bias in the parameter estimates. For sample size, whereas prior recommendations have suggested that regression mixtures require samples of well over 1,000 participants, even for classes at a large distance from each other (classes with regression weights of.20 vs.70), the present repeated measures regression mixture models allow for samples as low as 200 participants with an increased number (i.e., seven) of repeated measures. We also demonstrate an application of the proposed repeated measures approach using data from the Sleep Research Project. Implications and limitations of the study are discussed
The geometry of spontaneous spiking in neuronal networks
The mathematical theory of pattern formation in electrically coupled networks
of excitable neurons forced by small noise is presented in this work. Using the
Freidlin-Wentzell large deviation theory for randomly perturbed dynamical
systems and the elements of the algebraic graph theory, we identify and analyze
the main regimes in the network dynamics in terms of the key control
parameters: excitability, coupling strength, and network topology. The analysis
reveals the geometry of spontaneous dynamics in electrically coupled network.
Specifically, we show that the location of the minima of a certain continuous
function on the surface of the unit n-cube encodes the most likely activity
patterns generated by the network. By studying how the minima of this function
evolve under the variation of the coupling strength, we describe the principal
transformations in the network dynamics. The minimization problem is also used
for the quantitative description of the main dynamical regimes and transitions
between them. In particular, for the weak and strong coupling regimes, we
present asymptotic formulas for the network activity rate as a function of the
coupling strength and the degree of the network. The variational analysis is
complemented by the stability analysis of the synchronous state in the strong
coupling regime. The stability estimates reveal the contribution of the network
connectivity and the properties of the cycle subspace associated with the graph
of the network to its synchronization properties. This work is motivated by the
experimental and modeling studies of the ensemble of neurons in the Locus
Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive
performance and behavior
Searches for lepton-flavour-violating decays of the Higgs boson in TeV collisions with the ATLAS detector
This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and
H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample
of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated
luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard
Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
- …