109 research outputs found

    Repeated measures regression mixture models

    Get PDF
    Regression mixture models are one increasingly utilized approach for developing theories about and exploring the heterogeneity of effects. In this study we aimed to extend the current use of regression mixtures to a repeated regression mixture method when repeated measures, such as diary-type and experience-sampling method, data are available. We hypothesized that additional information borrowed from the repeated measures would improve the model performance, in terms of class enumeration and accuracy of the parameter estimates. We specifically compared three types of model specifications in regression mixtures: (a) traditional single-outcome model; (b) repeated measures models with three, five, and seven measures; and (c) a single-outcome model with the average of seven repeated measures. The results showed that the repeated measures regression mixture models substantially outperformed the traditional and average single-outcome models in class enumeration, with less bias in the parameter estimates. For sample size, whereas prior recommendations have suggested that regression mixtures require samples of well over 1,000 participants, even for classes at a large distance from each other (classes with regression weights of.20 vs.70), the present repeated measures regression mixture models allow for samples as low as 200 participants with an increased number (i.e., seven) of repeated measures. We also demonstrate an application of the proposed repeated measures approach using data from the Sleep Research Project. Implications and limitations of the study are discussed

    The geometry of spontaneous spiking in neuronal networks

    Full text link
    The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin-Wentzell large deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
    corecore