448 research outputs found
Spectroscopy of high proper motion stars in the ground--based UV
Based on high quality spectral data (spectral resolution R>60000) within the
wavelength range of 3550-5000 AA we determined main parameters (effective
temperature, surface gravity, microturbulent velocity, and chemical element
abundances including heavy metals from Sr to Dy) for 14 metal-deficient G-K
stars with large proper motions. The stars we studied have a wide range of
metallicity: [Fe/H]=-0.3 \div -2.9. Abundances of Mg, Al, Sr and Ba were
calculated with non-LTE line-formation effects accounted for. Abundances both
of the radioactive element Th and r-process element Eu were determined using
synthetic spectrum calculations. We selected stars that belong to different
galactic populations according to the kinematical criterion and parameters
determined by us. We found that the studied stars with large proper motions
refer to different components of the Galaxy: thin, thick disks and halo. The
chemical composition of the star BD+80 245 located far from the galactic plane
agrees with its belonging to the accreted halo. For the giant HD115444 we
obtained [Fe/H]=-2.91, underabundance of Mn, overabundance of heavy metals from
Ba to Dy, and, especially high excess of the r-process element Europium:
[Eu/Fe]=+1.26. Contrary to its chemical composition typical for halo stars,
HD115444 belongs to the disc population according to its kinematic parameters.Comment: 16 pages, 4 figures, 5 tables, "UV Universe-2010 (2nd NUVA Symposium)
conference
Reversed anisotropies and thermal contraction of FCC (110) surfaces
The observed anisotropies of surface vibrations for unreconstructed FCC metal
(110) surfaces are often reversed from the "common sense" expectation. The
source of these reversals is investigated by performing ab initio density
functional theory calculations to obtain the surface force constant tensors for
Ag(110), Cu(110) and Al(110). The most striking result is a large enhancement
in the coupling between the first and third layers of the relaxed surface,
which strongly reduces the amplitude of out-of-plane vibrations of atoms in the
first layer. This also provides a simple explanation for the thermal
contraction of interlayer distances. Both the anisotropies and the thermal
contraction arise primarily as a result of the bond topology, with all three
(110) surfaces showing similar behavior.Comment: 13 pages, in revtex format, plus 1 postscript figur
Neutron gauge calibration comparison of methods
Several methods for obtaining soil samples for determining soil water content were used
for field calibration of neutron gauges. This paper compares the results of calibration
curves obtained from the study data by comparing intercepts, slopes and correlation
coefficients ("r" values). The study found differences in characteristics between gauges
of the same brand, differences between brands and a great effect by access tube
materials on the calibration curve
Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I
We report the results of speckle-interferometric observations of 109 high
proper-motion metal-poor stars made with the 6-m telescope of the Special
Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight
objects -- G102-20, G191-55, BD+19~1185A, G89-14, G87-45, G87-47,
G111-38, and G114-25 -- into individual components and we are the first to
astrometrically resolve seven of these stars. New resolved systems included two
triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of
single-to-binary-to-triple-to-quadruple systems among the stars of our sample
is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti
Strongly focused light beams interacting with single atoms in free space
We construct 3-D solutions of Maxwell's equations that describe Gaussian
light beams focused by a strong lens. We investigate the interaction of such
beams with single atoms in free space and the interplay between angular and
quantum properties of the scattered radiation. We compare the exact results
with those obtained with paraxial light beams and from a standard input-output
formalism. We put our results in the context of quantum information processing
with single atoms.Comment: 9 pages, 9 figure
The Most Metal-Poor Quadruple System of Subdwarfs G89-14
The system of subdwarfs G89-14 is one of the most metal-poor multiple stars
with an atmospheric metal abundance . Speckle
interferometry at the 6-m BTA telescope has revealed that G89-14 consists of
four components. Measurements of the magnitude difference between the
components and published data have allowed their masses to be estimated:
, , , and . The ratio of the orbital periods
of the subsystems has been obtained, 0.52 yr : 3 000 yr : 650 000 yr
(1:5769:1250000), indicative of a high degree of hierarchy of G89-14 and its
internal dynamical stability. The calculated Galactic orbital elements and the
low metallicity of the quadruple system suggest that it belongs to the Galactic
halo.Comment: 5 pages, 3 figure
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
The status of GEO 600
The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
- …