2 research outputs found

    Numerical Study of Pulse Detonation Engine with One-step Overall Reaction Model

    Get PDF
    This paper presents an insight for the study of transient, compressible, intermittent pulsed detonation engine with one-step overall reaction model to reduce the computational complexity in detonation simulations. Investigations are done on flow field conditions developing inside the tube with the usage of irreversible one-step chemical reactions for detonations. In the present simulations 1-D and 2-D axisymmetric tubes are considered for the investigation. The flow conditions inside the detonation tube are estimated as a function of time and distance. Studies are also performed with different grid sizes which influence the prediction of Von-Neumann spike, CJ Pressure and detonation velocity. The simulation result from the single-cycle reaction model agrees well with the previous published literature of multi-step reaction models. The present studies shows that one-step overall reaction model is sufficient to predict the flow properties with reasonable accuracy. Finally, the results from the present study were compared and validated using NASA CEA.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 265-271, DOI: http://dx.doi.org/10.14429/dsj.65.873

    Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Get PDF
    Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view
    corecore