16 research outputs found

    Symmetries and Interaction coefficients of Kelvin waves

    Full text link
    We considered symmetry restriction on the interaction coefficients of Kelvin waves and demonstrated that linear in small wave vector asymptotic is not forbidden, as one can expect by naive reasoning.Comment: 4 pages, submitted to J. of Low Temp. Phy

    Comment on "Symmetries and Interaction Coefficients of Kelvin waves" [arXiv:1005.4575] by Lebedev and L'vov

    Get PDF
    We comment on the claim by Lebedev and L'vov [arXiv:1005.4575] that the symmetry with respect to a tilt of a quantized vortex line does not yet prohibit coupling between Kelvin waves and the large-scale slope of the line. Ironically, the counterexample of an effective scattering vertex in the local induction approximation (LIA) attempted by Lebedev and L'vov invalidates their logic all by itself being a notoriously known example of how symmetries impose stringent constraints on kelvon kinetics---not only the coupling in question but the kinetics in general are absent within LIA. We further explain that the mistake arises from confusing symmetry properties of a specific mathematical representation in terms of the canonical vortex position field w(z) = x(z) + iy(z), which explicitly breaks the tilt symmetry due to an arbitrary choice of the z-axis, with those of the real physical system recovered in final expressions.Comment: comment on arXiv:1005.4575, version accepted in JLTP with minimal changes: abstract adde

    Identification of Kelvin waves: numerical challenges

    Full text link
    Kelvin waves are expected to play an essential role in the energy dissipation for quantized vortices. However, the identification of these helical distortions is not straightforward, especially in case of vortex tangle. Here we review several numerical methods that have been used to identify Kelvin waves within the vortex filament model. We test their validity using several examples and estimate whether these methods are accurate enough to verify the correct Kelvin spectrum. We also illustrate how the correlation dimension is related to different Kelvin spectra and remind that the 3D energy spectrum E(k) takes the form 1/k in the high-k region, even in the presence of Kelvin waves.Comment: 6 pages, 5 figures. The final publication is available at http://www.springerlink.co

    Creation of the precision magnetic spectrometer SCAN-3

    Full text link
    The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article

    Creation of the precision magnetic spectrometer SCAN-3

    No full text
    The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article
    corecore