2 research outputs found

    Analysis of recent empirical challenges to an account of time-to-collision perception

    No full text
    How do we perceive how long it will be before we reach a certain place when running, driving, or skiing? How do we perceive how long it will be before a moving object reaches us or will arrive at a place where it can be hit or caught? These are questions of how we temporally coordinate our actions with a dynamic environment so as to control collision events. Much of the theoretical work on the control of these interceptive actions has been united in supposing that (1) timing is functionally separable from positioning and the two are controlled using different types of information; (2) timing is controlled using special-purpose time-to-arrival information; (3) the time-to-arrival information used for the timing of fast interceptive actions is a first-order approximation to the actual time-to-arrival, which does not take accelerations into account. Challenges to each of these suppositions have recently emerged, suggesting that a complete rethinking of how interceptions are controlled may be necessary. These challenges are analyzed in detail and it is shown that they are readily accommodated by a recent theory of interceptive timing based on the points just noted
    corecore