27 research outputs found
Recommended from our members
Atomic-scale dynamics of atoms and dimers on the Si(001) surface
The kinetics of adsorbed Si monomers and dimers, at submonolayer coverage, are measured using scanning tunneling microscopy (STM). Si monomers are observed in empty-state STM images acquired between room temperature and 115 C. The monomers are trapped at the ends of rebonded-SB type dimer rows. When monomers thermally escape from the traps, they rapidly diffuse along the substrate dimer row until they find another unoccupied trap or return to their original trap. The binding activation barrier at isolated traps is {approximately}1.0 eV. A slightly lower barrier exists for monomers to hop between the ends of neighboring dimer rows - a process facilitating diffusion along segments of SB type steps. In addition to monomers, the interactions of adsorbed Si dimers with steps and islands on Si(001) are quantified using atom-tracking STM. Diffusing dimers are reflected from steps, sides of islands, and certain surface defect structures. Site-specific free energies are extracted from measurements of lattice-site occupation probabilities of dimers trapped between these reflecting barriers. Relative to the free energy of isolated dimers on a terrace, dimers located at the first lattice site next to SA steps and the sides of islands are bound by {approximately}0.03-0.06 eV. The binding decreases to half that at the second lattice site, and is indistinguishable from the free-terrace value at a distance of three or more lattice sites
STM characterization of the Si-P heterodimer
We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to
study the behavior of adsorbed phosphine (PH) on Si(001), as a function
of annealing temperature, paying particular attention to the formation of the
Si-P heterodimer. Dosing the Si(001) surface with 0.002 Langmuirs of
PH results in the adsorption of PH (x=2,3) onto the surface and
some etching of Si to form individual Si ad-dimers. Annealing to 350C
results in the incorporation of P into the surface layer to form Si-P
heterodimers and the formation of short 1-dimensional Si dimer chains and
monohydrides. In filled state STM images, isolated Si-P heterodimers appear as
zig-zag features on the surface due to the static dimer buckling induced by the
heterodimer. In the presence of a moderate coverage of monohydrides this static
buckling is lifted, rending the Si-P heterodimers invisible in filled state
images. However, we find that we can image the heterodimer at all H coverages
using empty state imaging. The ability to identify single P atoms incorporated
into Si(001) will be invaluable in the development of nanoscale electronic
devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi
Split-off dimer defects on the Si(001)2x1 surface
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were
investigated using high-resolution scanning tunneling microscopy and first
principles calculations. We find that under low bias filled-state tunneling
conditions, isolated 'split-off' dimers in these defect complexes are imaged as
pairs of protrusions while the surrounding Si surface dimers appear as the
usual 'bean-shaped' protrusions. We attribute this to the formation of pi-bonds
between the two atoms of the split-off dimer and second layer atoms, and
present charge density plots to support this assignment. We observe a local
brightness enhancement due to strain for different DV complexes and provide the
first experimental confirmation of an earlier prediction that the 1+2-DV
induces less surface strain than other DV complexes. Finally, we present a
previously unreported triangular shaped split-off dimer defect complex that
exists at SB-type step edges, and propose a structure for this defect involving
a bound Si monomer.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Recommended from our members
Adaptive scanning probe microscopies
This work is comprised of two major sections. In the first section the authors develop multivariate image classification techniques to distinguish and identify surface electronic species directly from multiple-bias scanning tunneling microscope (STM) images. Multiple measurements at each site are used to distinguish and categorize inequivalent electronic or atomic species on the surface via a computerized classification algorithm. Then, comparison with theory or other suitably chosen experimental data enables the identification of each class. They demonstrate the technique by analyzing dual-polarity constant-current topographs of the Ge(111) surface. Just two measurements, negative- and positive-bias topography height, permit pixels to be separated into seven different classes. Labeling four of the classes as adatoms, first-layer atoms, and two inequivalent rest-atom sites, they find excellent agreement with the c(2 x 8) structure. The remaining classes are associated with structural defects and contaminants. This work represents a first step toward developing a general electronic/chemical classification and identification tool for multivariate scanning probe microscopy imagery. In the second section they report measurements of the diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 C using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the STM probe tip into position above selected atoms with sub-Angstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of {approximately} 1,000 over conventional STM imaging techniques
Simulations of denuded-zone formation during growth on surfaces with anisotropic diffusion
We have investigated the formation of denuded zones during epitaxial growth on surfaces exhibiting anisotropic diffusion of adparticles, such as Si(001)-2x1, using Monte Carlo simulations and a continuum model. In both the simulations, which were mainly for low-temperature cases (small critical clusters), and the continuum model, appropriate for high-temperature cases (large critical clusters), it was found that the ratio of denuded-zone widths Wf and Ws in the fast- and slow-diffusion directions scales with the ratio Df/Ds of the diffusion constants in the two directions with a power of 1/2, i.e., Wf/Ws ≈ (Df/Ds)1/2, independent of various conditions including the degree of diffusion anisotropy. This supplies the foundation of a method for extracting the diffusion anisotropy from the denuded zone anisotropy which is experimentally measurable. Further, we find that unequal probabilities of a diffusing particle sticking to different types of step edges [e.g., S A and SB steps on Si(001)] does not affect the relation Wf/Ws ≈ (Df/Ds)1/2 seriously unless the smaller of the two sticking probabilities is less than about 0.1. Finally, we examined the relation between the number of steps and the number of sites visited in anisotropic random walks, finding it is better described by a crossover from one-dimensional to two-dimensional behavior than by scaling behavior with a single exponent. This result has bearing on scaling arguments relating denuded-zone widths to diffusion constants for anisotropic diffusion.open7
