694 research outputs found
Dzyaloshinskii-Moriya interaction in NaVO: a microscopic study
We present a unified account of magnetic exchange and Raman scattering in the
quasi-one-dimensional transition-metal oxide NaVO. Based on a
cluster-model approach explicit expressions for the exchange integral and the
Raman-operator are given. It is demonstrated that a combination of the
electronic-structure and the Dzyaloshinskii-Moriya interaction, allowed by
symmetry in this material, are responsible for the finite Raman cross-section
giving rise to both, one- and two-magnon scattering amplitudes.Comment: 7 pages, 1 figur
Shape Space Methods for Quantum Cosmological Triangleland
With toy modelling of conceptual aspects of quantum cosmology and the problem
of time in quantum gravity in mind, I study the classical and quantum dynamics
of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do
so by importing techniques to the triangle model from the corresponding 4
particles in 1-d model, using the fact that both have 2-spheres for shape
spaces, though the latter has a trivial realization whilst the former has a
more involved Hopf (or Dragt) type realization. I furthermore interpret the
ensuing Dragt-type coordinates as shape quantities: a measure of
anisoscelesness, the ellipticity of the base and apex's moments of inertia, and
a quantity proportional to the area of the triangle. I promote these quantities
at the quantum level to operators whose expectation and spread are then useful
in understanding the quantum states of the system. Additionally, I tessellate
the 2-sphere by its physical interpretation as the shape space of triangles,
and then use this as a back-cloth from which to read off the interpretation of
dynamical trajectories, potentials and wavefunctions. I include applications to
timeless approaches to the problem of time and to the role of uniform states in
quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process,
and containing some new reference
Local well-posedness for membranes in the light cone gauge
In this paper we consider the classical initial value problem for the bosonic
membrane in light cone gauge. A Hamiltonian reduction gives a system with one
constraint, the area preserving constraint. The Hamiltonian evolution equations
corresponding to this system, however, fail to be hyperbolic. Making use of the
area preserving constraint, an equivalent system of evolution equations is
found, which is hyperbolic and has a well-posed initial value problem. We are
thus able to solve the initial value problem for the Hamiltonian evolution
equations by means of this equivalent system. We furthermore obtain a blowup
criterion for the membrane evolution equations, and show, making use of the
constraint, that one may achieve improved regularity estimates.Comment: 29 page
The Hamiltonian formulation of General Relativity: myths and reality
A conventional wisdom often perpetuated in the literature states that: (i) a
3+1 decomposition of space-time into space and time is synonymous with the
canonical treatment and this decomposition is essential for any Hamiltonian
formulation of General Relativity (GR); (ii) the canonical treatment
unavoidably breaks the symmetry between space and time in GR and the resulting
algebra of constraints is not the algebra of four-dimensional diffeomorphism;
(iii) according to some authors this algebra allows one to derive only spatial
diffeomorphism or, according to others, a specific field-dependent and
non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac
[Proc. Roy. Soc. A 246 (1958) 333] and of ADM [Arnowitt, Deser and Misner, in
"Gravitation: An Introduction to Current Research" (1962) 227] of the canonical
structure of GR are equivalent. We provide some general reasons why these
statements should be questioned. Points (i-iii) have been shown to be incorrect
in [Kiriushcheva et al., Phys. Lett. A 372 (2008) 5101] and now we thoroughly
re-examine all steps of the Dirac Hamiltonian formulation of GR. We show that
points (i-iii) above cannot be attributed to the Dirac Hamiltonian formulation
of GR. We also demonstrate that ADM and Dirac formulations are related by a
transformation of phase-space variables from the metric to lapse
and shift functions and the three-metric , which is not canonical. This
proves that point (iv) is incorrect. Points (i-iii) are mere consequences of
using a non-canonical change of variables and are not an intrinsic property of
either the Hamilton-Dirac approach to constrained systems or Einstein's theory
itself.Comment: References are added and updated, Introduction is extended,
Subsection 3.5 is added, 83 pages; corresponds to the published versio
A gauge model for quantum mechanics on a stratified space
In the Hamiltonian approach on a single spatial plaquette, we construct a
quantum (lattice) gauge theory which incorporates the classical singularities.
The reduced phase space is a stratified K\"ahler space, and we make explicit
the requisite singular holomorphic quantization procedure on this space. On the
quantum level, this procedure furnishes a costratified Hilbert space, that is,
a Hilbert space together with a system which consists of the subspaces
associated with the strata of the reduced phase space and of the corresponding
orthoprojectors. The costratified Hilbert space structure reflects the
stratification of the reduced phase space. For the special case where the
structure group is , we discuss the tunneling probabilities
between the strata, determine the energy eigenstates and study the
corresponding expectation values of the orthoprojectors onto the subspaces
associated with the strata in the strong and weak coupling approximations.Comment: 38 pages, 9 figures. Changes: comments on the heat kernel and
coherent states have been adde
Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg Expansion Cohort Results
PURPOSE CheckMate 032 is an open-label, multicohort study that includes patients with unresectable locally advanced or metastatic urothelial carcinoma (mUC) treated with nivolumab 3 mg/kg monotherapy every 2 weeks (NIVO3), nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four doses followed by nivolumab monotherapy 3 mg/kg every 2 weeks (NIVO3+IPI1), or nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks for four doses followed by nivolumab monotherapy 3 mg/kg every 2 weeks (NIVO1+IPI3). We report on the expanded NIVO1+IPI3 cohort and extended follow-up for the NIVO3 and NIVO3+IPI1 cohorts.
METHODS Patients with platinum-pretreated mUC were enrolled in this phase I/II multicenter study to receive NIVO3, NIVO3+IPI1, or NIVO1+IPI3 until disease progression or unacceptable toxicity. Primary end point was investigator-assessed objective response rate per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, including duration of response.
RESULTS Seventy-eight patients were treated with NIVO3 (minimum follow-up, 37.7 months), 104 with NIVO3+IPI1 (minimum follow-up, 38.8 months), and 92 with NIVO1+IPI3 (minimum follow-up, 7.9 months). Objective response rate was 25.6%, 26.9%, and 38.0% in the NIVO3, NIVO3+IPI1, and NIVO1+IPI3 arms, respectively. Median duration of response was more than 22 months in all arms. Grade 3 or 4 treatment-related adverse events occurred in 21 (26.9%), 32 (30.8%), and 36 (39.1%) patients treated with NIVO3, NIVO3+IPI1, and NIVO1+IPI3, respectively. Grade 5 treatment-related pneumonitis occurred in one patient each in the NIVO3 and NIVO3+IPI1 arms.
CONCLUSION With longer follow-up, NIVO3 demonstrated sustained antitumor activity alone and in combination with ipilimumab. NIVO1+IPI3 provided the greatest antitumor activity of all regimens, with a manageable safety profile. This result not only supports additional study of NIVO1+IPI3 in mUC, but demonstrates the potential benefit of immunotherapy combinations in this disease
The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity
We discuss various basic conceptual issues related to coarse graining flows
in quantum gravity. In particular the requirement of background independence is
shown to lead to renormalization group (RG) flows which are significantly
different from their analogs on a rigid background spacetime. The importance of
these findings for the asymptotic safety approach to Quantum Einstein Gravity
(QEG) is demonstrated in a simplified setting where only the conformal factor
is quantized. We identify background independence as a (the ?) key prerequisite
for the existence of a non-Gaussian RG fixed point and the renormalizability of
QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum
Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to
appear in General Relativity and Gravitatio
Gravity wave analogs of black holes
It is demonstrated that gravity waves of a flowing fluid in a shallow basin
can be used to simulate phenomena around black holes in the laboratory. Since
the speed of the gravity waves as well as their high-wavenumber dispersion
(subluminal vs. superluminal) can be adjusted easily by varying the height of
the fluid (and its surface tension) this scenario has certain advantages over
the sonic and dielectric black hole analogs, for example, although its use in
testing quantum effects is dubious. It can be used to investigate the various
classical instabilities associated with black (and white) holes experimentally,
including positive and negative norm mode mixing at horizons. PACS: 04.70.-s,
47.90.+a, 92.60.Dj, 04.80.-y.Comment: 14 pages RevTeX, 5 figures, section VI modifie
Forward and midrapidity like-particle ratios from p+p collisions at sqrt(s)=200 GeV
We present a measurement of pi-\pi+, K-/K+ and pbar/p from p+p collisions at
sqrt(s) = 20 0GeV over the rapidity range 0<y<3.4. For pT < 2.0 GeV/c we see no
significant transverse momentum dependence of the ratios. All three ratios are
independent of rapidity for y ~< 1.5 and then steadily decline from y ~ 1.5 to
y ~ 3. The pi-\pi+ ratio is below unity for y > 2.0. The pbar/p ratio is very
similar for p+p and 20% central Au+Au collisions at all rapidities. In the
fragmentation region the three ratios seem to be independent of beam energy
when viewed from the rest frame of one of the protons. Theoretical models based
on quark-diquark breaking mechanisms overestimate the pbar/p ratio up to y ~<
3. Including additional mechanisms for baryon number transport such as baryon
junctions leads to a better description of the data.Comment: 15 pages, 4 figures, uses elsart.sty. Changes to references and
discussion based on referee comments, resubmitted to Phys. Lett.
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
- …