324 research outputs found
On formation of domain wall lattices
We study the formation of domain walls in a phase transition in which an
S_5\times Z_2 symmetry is spontaneously broken to S_3\times S_2. In one compact
spatial dimension we observe the formation of a stable domain wall lattice. In
two spatial dimensions we find that the walls form a network with junctions,
there being six walls to every junction. The network of domain walls evolves so
that junctions annihilate anti-junctions. The final state of the evolution
depends on the relative dimensions of the simulation domain. In particular we
never observe the formation of a stable lattice of domain walls for the case of
a square domain but we do observe a lattice if one dimension is somewhat
smaller than the other. During the evolution, the total wall length in the
network decays with time as t^{-0.71}, as opposed to the usual t^{-1} scaling
typical of regular Z_2 networks.Comment: 7 pages, 4 figures. Minor changes, final version accepted for
publication in Phys. Rev.
ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel biofouling
Biofouled vessels create novel, mobile habitats characterized by great abundances of opportunistic and non-native species. Vessel biofouling1 affects the environment as well as the economics of vessel management..
Almost-Euclidean subspaces of via tensor products: a simple approach to randomness reduction
It has been known since 1970's that the N-dimensional -space contains
nearly Euclidean subspaces whose dimension is . However, proofs of
existence of such subspaces were probabilistic, hence non-constructive, which
made the results not-quite-suitable for subsequently discovered applications to
high-dimensional nearest neighbor search, error-correcting codes over the
reals, compressive sensing and other computational problems. In this paper we
present a "low-tech" scheme which, for any , allows to exhibit nearly
Euclidean -dimensional subspaces of while using only
random bits. Our results extend and complement (particularly) recent work
by Guruswami-Lee-Wigderson. Characteristic features of our approach include (1)
simplicity (we use only tensor products) and (2) yielding "almost Euclidean"
subspaces with arbitrarily small distortions.Comment: 11 pages; title change, abstract and references added, other minor
change
Systematic Study of Fermion Masses and Mixing Angles in Horizontal SU(2) Gauge Theory
Despite its great success in explaining the basic interactions of nature, the
standard model suffers from an inability to explain the observed masses of the
fundamental particles and the weak mixing angles between them. We shall survey
a set of possible extensions to the standard model, employing an SU(2)
``horizontal'' gauge symmetry between the particle generations, to see what
light they can shed on this problem.Comment: 43 pages, 4 figures (available by postal mail on request), OZ-92/0
Putting theory oriented evaluation into practice
Evaluations of gaming simulations and business games as teaching devices are typically end-state driven. This emphasis fails to detect how the simulation being evaluated does or does not bring about its desired consequences. This paper advances the use of a logic model approach which possesses a holistic perspective that aims at including all elements associated with the situation created by a game. The use of the logic model approach is illustrated as applied to Simgame, a board game created for secondary school level business education in six European Union countries
Decoupling of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy
The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact
diagonalization of small systems in the regime of weak inter-chain coupling. A
gapless phase with quasi long-range spiral correlations has been predicted to
occur in this regime if easy-plane (XY) anisotropy is present. We find in
general that the finite zig-zag ladder shows three phases: a gapless collinear
phase, a dimer phase and a spiral phase. We study the level crossings of the
spectrum,the dimer correlation function, the structure factor and the spin
stiffness within these phases, as well as at the transition points. As the
inter-chain coupling decreases we observe a transition in the anisotropic XY
case from a phase with a gap to a gapless phase that is best described by two
decoupled antiferromagnetic chains. The isotropic and the anisotropic XY cases
are found to be qualitatively the same, however, in the regime of weak
inter-chain coupling for the small systems studied here. We attribute this to a
finite-size effect in the isotropic zig-zag case that results from
exponentially diverging antiferromagnetic correlations in the weak-coupling
limit.Comment: to appear in Physical Review
Classification of non-indigenous species based on their impacts: Considerations for application in marine management
Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
Gauge and Scheme Dependence of Mixing Matrix Renormalization
We revisit the issue of mixing matrix renormalization in theories that
include Dirac or Majorana fermions. We show how a gauge-variant on-shell
renormalized mixing matrix can be related to a manifestly gauge-independent one
within a generalized scheme of renormalization. This
scheme-dependent relation is a consequence of the fact that in any scheme of
renormalization, the gauge-dependent part of the mixing-matrix counterterm is
ultra-violet safe and has a pure dispersive form. Employing the unitarity
properties of the theory, we can successfully utilize the afore-mentioned
scheme-dependent relation to preserve basic global or local symmetries of the
bare Lagrangian through the entire process of renormalization. As an immediate
application of our study, we derive the gauge-independent renormalization-group
equations of mixing matrices in a minimal extension of the Standard Model with
isosinglet neutrinos.Comment: 31 pages, LaTeX, uses axodraw.st
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this first part, we present the results of the
pion-induced reactions and the extracted resonance and background properties
with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
- …