36 research outputs found

    Studying human glial cells: where are we today?

    No full text

    Preface to the second edition

    No full text

    Neuroglia

    No full text

    Neuroglia

    No full text

    Editorial: GLIA at 20 years

    No full text

    The concept of neuroglia: a historical perspective

    No full text

    Single channel currents activated by glycine and GABA in spinal cord neurons

    No full text

    Thrombin-induced activation of cultured rodent microglia

    No full text
    Microglia are the resident immune cells of the CNS. Upon brain damage, these cells are rapidly activated and function as tissue macrophages. The first steps in this activation still remain unclear, but it is widely believed that substances released from damaged brain tissue trigger this process. In this article, we describe the effects of the blood coagulation factor thrombin on cultured rodent microglial cells. Thrombin induced a transient Ca2+ increase in microglial cells, which persisted in Ca2+-free media. It was blocked by thapsigargin, indicating that thrombin caused a Ca2+ release from internal stores. Preincubation with pertussis toxin did not alter the thrombin-induced [Ca2+](i) signal, whereas it was blocked by hirudin, a blocker of thrombin's proteolytic activity. Incubation with thrombin led to the production of nitric oxide and the release of the cytokines tumor necrosis factor-α, interleukin-6, interleukin-12, the chemokine KC, and the soluble tumor necrosis factor-α receptor II and had a significant proliferative effect. Our findings indicate that thrombin, a molecule that enters the brain at sites of injury, rapidly triggered microglial activation

    Development of cell-cell coupling among cells of the oligodendrocyte lineage

    No full text
    corecore