1 research outputs found
Microscopic mechanisms of dephasing due to electron-electron interactions
We develop a non-perturbative numerical method to study tunneling of a single
electron through an Aharonov-Bohm ring where several strongly interacting
electrons are bound. Inelastic processes and spin-flip scattering are taken
into account. The method is applied to study microscopic mechanisms of
dephasing in a non-trivial model. We show that electron-electron interactions
described by the Hubbard Hamiltonian lead to strong dephasing: the transmission
probability at flux is high even at small interaction strength. In
addition to inelastic scattering, we identify two energy conserving mechanisms
of dephasing: symmetry-changing and spin-flip scattering. The many-electron
state on the ring determines which of these mechanisms will be at play:
transmitted current can occur either in elastic or inelastic channels, with or
without changing the spin of the scattering electron.Comment: 11 pages, 16 figures Submitted to Phys. Rev.