666 research outputs found

    Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase.

    Get PDF
    We report on an experimental study of the self-organization and phase behavior of hairy-rod π -conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl]—i.e., poly[2,7–(9,9–bis(2–ethylhexyl)fluorene] (PF2∕6) —as a function of molecular weight (Mn) . The results have been compared to those of phenomenological theory. Samples for which Mn=3–147 kg∕mol were used. First, the stiffness of PF2∕6 , the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2∕6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and higher Mn (LMW, Mn<Mn* and HMW, Mn>Mn* ) regimes, respectively, based on free-energy argument of nematic and hexagonal hairy rods and found to correspond to the experimental x-ray diffraction (XRD) results for PF2∕6 . By using the lattice parameters of PF2∕6 as an experimental input, the nematic-hexagonal transition has been predicted in the vicinity of glassification temperature (Tg) of PF2∕6 . Then, by taking the orientation parts of the free energies into account the nematic-hexagonal transition has been calculated as a function of temperature and Mn and a phase diagram has been formed. Below Tg of 80 °C only (frozen) nematic phase is observed for Mn<Mn*=104 g∕mol and crystalline hexagonal phase for Mn>Mn* . The nematic-hexagonal transition upon heating is observed for the HMW regime depending weakly on Mn , being at 140–165 °C for Mn>Mn* . Third, the phase behavior and structure formation as a function of Mn have been probed using powder and fiber XRD and differential scanning calorimetry and reasonable semiquantitative agreement with theory has been found for Mn≥3 kg∕mol . Fourth, structural characteristics are widely discussed. The nematic phase of LMW materials has been observed to be denser than high-temperature nematic phase of HMW compounds. The hexagonal phase has been found to be paracrystalline in the (ab0) plane but a genuine crystal meridionally. We also find that all these materials including the shortest 10-mer possess the formerly observed rigid five-helix hairy-rod molecular structure

    Effective Field Theory for Layered Quantum Antiferromagnets with Non-Magnetic Impurities

    Full text link
    We propose an effective two-dimensional quantum non-linear sigma model combined with classical percolation theory to study the magnetic properties of site diluted layered quantum antiferromagnets like La2_{2}Cu1x_{1-x}Mx_xO4_{4} (M==Zn, Mg). We calculate the staggered magnetization at zero temperature, Ms(x)M_s(x), the magnetic correlation length, ξ(x,T)\xi(x,T), the NMR relaxation rate, 1/T1(x,T)1/T_1(x,T), and the N\'eel temperature, TN(x)T_N(x), in the renormalized classical regime. Due to quantum fluctuations we find a quantum critical point (QCP) at xc0.305x_c \approx 0.305 at lower doping than the two-dimensional percolation threshold xp0.41x_p \approx 0.41. We compare our results with the available experimental data.Comment: Final version accepted for publication as a Rapid Communication on Physical Review B. A new discussion on the effect of disorder in layered quantum antiferromagnets is include

    β -decay half-lives of neutron-rich nuclides in the A=100-110 mass region

    Get PDF
    β-decay half-lives of neutron-rich nuclides in the A=100-110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    Total absorption spectroscopy of the β decay of Zr 101,102 and Tc 109

    Get PDF
    20 pags., 9 figs., 5 tabs.The β decay of Zr101,102 and Tc109 was studied using the technique of total absorption spectroscopy. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) (SuN) detector in the first-ever application of total absorption spectroscopy with a fast beam produced via projectile fragmentation. The β-decay feeding intensity and Gamow-Teller transition strength distributions were extracted for these three decays. The extracted distributions were compared to three different quasiparticle random-phase approximation (QRPA) models based on different mean-field potentials. A comparison with calculations from one of the QRPA models was performed to learn about the ground-state shape of the parent nucleus. For Zr101 and Zr102, calculations assuming a pure shape configuration (oblate or prolate) were not able to reproduce the extracted distributions. These results may indicate that some type of mixture between oblate and prolate shapes is necessary to reproduce the extracted distributions. For Tc109, a comparison of the extracted distributions with QRPA calculations suggests a dominant oblate configuration. The other two QRPA models are commonly used to provide β-decay properties in r-process network calculations. This work shows the importance of making comparisons between the experimental and theoretical β-decay distributions, rather than just half-lives and β-delayed neutron emission probabilities, as close to the r-process path as possible.A.A. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. FPA2014-52823-C2-1-P, and No. FPA2017-83946-C2-1-P and the program Severo Ochoa (SEV-2014-0398). P.S. acknowledges support from MCIU/AEI/FEDER,UE (Spain) under Contract No. PGC2018-093636-B-I00. S.V. acknowledges support from Czech Science Foundation Project No. 19-14048 and the Charles University Project No. UNCE/SCI/013. This work was supported by the National Science Foundation under Grants No. PHY 1565546 (NSCL), No. PHY 1430152 (JINA-CEE), and No. PHY 1350234 (CAREER). This material is based upon work supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Awards No. DE-NA0003180 and/or No. DE-NA000097

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton

    Full text link
    Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.

    Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0

    Full text link
    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/- 0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.

    Study of Inclusive J/psi Production in Two-Photon Collisions at LEP II with the DELPHI Detector

    Get PDF
    Inclusive J/psi production in photon-photon collisions has been observed at LEP II beam energies. A clear signal from the reaction gamma gamma -> J/psi+X is seen. The number of observed N(J/psi -> mu+mu-) events is 36 +/- 7 for an integrated luminosity of 617 pb^{-1}, yielding a cross-section of sigma(J/psi+X) = 45 +/- 9 (stat) +/- 17 (syst) pb. Based on a study of the event shapes of different types of gamma gamma processes in the PYTHIA program, we conclude that (74 +/- 22)% of the observed J/psi events are due to `resolved' photons, the dominant contribution of which is most probably due to the gluon content of the photon.Comment: 13 pages, 8 figures, Accepted by Phys. Lett.

    CP asymmetry in BϕKSB \to \phi K_S in a general two-Higgs-doublet model with fourth-generation quarks

    Full text link
    We discuss the time-dependent CP asymmetry of decay BϕKSB \to \phi K_S in an extension of the Standard Model with both two Higgs doublets and additional fourth-generation quarks. We show that although the Standard Model with two-Higgs-doublet and the Standard model with fourth generation quarks alone are not likely to largely change the effective sin2β\sin 2 \beta from the decay of BϕKSB \to \phi K_S , the model with both additional Higgs doublet and fourth-generation quarks can easily account for the possible large negative value of sin2β\sin 2 \beta without conflicting with other experimental constraints. In this model, additional large CP violating effects may arise from the flavor changing Yukawa interactions between neutral Higgs bosons and the heavy fourth generation down type quark, which can modify the QCD penguin contributions. With the constraints obtained from bssˉsb \to s \bar{s} s processes such as BXsγB \to X_s \gamma and ΔmBs0\Delta m_{B_s^0}, this model can lead to the effective sin2β\sin 2 \beta to be as large as 0.4- 0.4 in the CP asymmetry of BϕKSB \to \phi K_S.Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
    corecore