104 research outputs found
Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and
unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions.
As their defining property, these theories admit the action of a global or
local symmetry group that is (i) simple, and (ii) acts irreducibly on all the
vector fields of the theory, including the ``graviphoton''. Restricting
ourselves to the theories that originate from five dimensions via dimensional
reduction, we find that the generic Jordan family of MESGTs with the scalar
manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four
dimensions with the unifying global symmetry group SO(2,n). Of these theories
only one can be gauged so as to obtain a unified YMESGT with the gauge group
SO(2,1). Three of the four magical supergravity theories defined by simple
Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions.
Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with
gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family
and the theories whose scalar manifolds are homogeneous but not symmetric do
not lead to unified MESGTs in four dimensions. The three infinite families of
unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras,
whose scalar manifolds are non-homogeneous, do not lead directly to unified
MESGTs in four dimensions under dimensional reduction. However, since their
manifolds are non-homogeneous we are not able to completely rule out the
existence of symplectic sections in which these theories become unified in four
dimensions.Comment: 47 pages; latex fil
Unified Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Five Dimensions
Unified N=2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity
theories in which all the vector fields, including the graviphoton, transform
in an irreducible representation of a simple global symmetry group of the
Lagrangian. As was established long time ago, in five dimensions there exist
only four unified Maxwell-Einstein supergravity theories whose target manifolds
are symmetric spaces. These theories are defined by the four simple Euclidean
Jordan algebras of degree three. In this paper, we show that, in addition to
these four unified MESGTs with symmetric target spaces, there exist three
infinite families of unified MESGTs as well as another exceptional one. These
novel unified MESGTs are defined by non-compact (Minkowskian) Jordan algebras,
and their target spaces are in general neither symmetric nor homogeneous. The
members of one of these three infinite families can be gauged in such a way as
to obtain an infinite family of unified N=2 Yang-Mills-Einstein supergravity
theories, in which all vector fields transform in the adjoint representation of
a simple gauge group of the type SU(N,1). The corresponding gaugings in the
other two infinite families lead to Yang-Mills-Einstein supergravity theories
coupled to tensor multiplets.Comment: Latex 2e, 28 pages. v2: reference added, footnote 14 enlarge
Search for Colour Reconnection Effects in e+e- -> W+W- -> hadrons through Particle-Flow Studies at LEP
A search for colour reconnection effects in hadronic decays of W pairs is
performed with the L3 detector at centre-of-mass energies between 189 and 209
GeV. The analysis is based on the study of the particle flow between jets
associated to the same W boson and between two different W bosons in qqqq
events. The ratio of particle yields in the different interjet regions is found
to be sensitive to colour reconnection effects implemented in some
hadronisation models. The data are compared to different models with and
without such effects. An extreme scenario of colour reconnection is ruled out
Inclusive Jet Production in Two-Photon Collisions at LEP
Inclusive jet production, e+e- -> e+e- \ee$ jet X, is studied using 560/pb of
data collected at LEP with the L3 detector at centre-of-mass energies between
189 and 209 GeV. The inclusive differential cross section is measured using a
k_t jet algorithm as a function of the jet transverse momentum, pt, in the
range 3<pt<50 GeV for a pseudorapidity, eta, in the range -1<eta<1. This cross
section is well represented by a power law. For high pt, the measured cross
section is significantly higher than the NLO QCD predictions, as already
observed for inclusive charged and neutral pion production
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study
A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study
In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4
Predicting response and survival in chemotherapy-treated triple-negative breast cancer
BACKGROUND: In this study, we evaluated the ability of gene expression profiles to predict chemotherapy response and survival in triple-negative breast cancer (TNBC). METHODS: Gene expression and clinical-pathological data were evaluated in five independent cohorts, including three randomised clinical trials for a total of 1055 patients with TNBC, basal-like disease (BLBC) or both. Previously defined intrinsic molecular subtype and a proliferation signature were determined and tested. Each signature was tested using multivariable logistic regression models (for pCR (pathological complete response)) and Cox models (for survival). Within TNBC, interactions between each signature and the basal-like subtype (vs other subtypes) for predicting either pCR or survival were investigated. RESULTS: Within TNBC, all intrinsic subtypes were identified but BLBC predominated (55-81%). Significant associations between genomic signatures and response and survival after chemotherapy were only identified within BLBC and not within TNBC as a whole. In particular, high expression of a previously identified proliferation signature, or low expression of the luminal A signature, was found independently associated with pCR and improved survival following chemotherapy across different cohorts. Significant interaction tests were only obtained between each signature and the BLBC subtype for prediction of chemotherapy response or survival. CONCLUSIONS: The proliferation signature predicts response and improved survival after chemotherapy, but only within BLBC. This highlights the clinical implications of TNBC heterogeneity, and suggests that future clinical trials focused on this phenotypic subtype should consider stratifying patients as having BLBC or not
Studies of Hadronic Event Structure in e+e- Annihilation from 30 GeV to 209 GeV with the L3 Detector
In this Report, QCD results obtained from a study of hadronic event structure
in high energy e^+e^- interactions with the L3 detector are presented. The
operation of the LEP collider at many different collision energies from 91 GeV
to 209 GeV offers a unique opportunity to test QCD by measuring the energy
dependence of different observables. The main results concern the measurement
of the strong coupling constant, \alpha_s, from hadronic event shapes and the
study of effects of soft gluon coherence through charged particle multiplicity
and momentum distributions.Comment: To appear in Physics Report
- …