47 research outputs found
Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops
We investigate the solar flare of 20 October 2002. The flare was accompanied
by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray
emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of
the HXR time profiles in different energy channels made with the Lomb
periodogram indicates two statistically significant time periods of about 16
and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR
emission in the impulsive phase of the flare. The 16-second QPP were more
pronounced in the thermal HXR emission and were observed both in the impulsive
and in the decay phases of the flare. Imaging analysis of the flare region, the
determined time periods of the QPP and the estimated physical parameters of
magnetic loops in the flare region allow us to interpret the observations as
follows. 1) In the impulsive phase energy was released and electrons were
accelerated by successive acts with the average time period of about 36 seconds
in different parts of two spatially separated, but interacting loop systems of
the flare region. 2) The 36-second periodicity of energy release could be
caused by the action of fast MHD oscillations in the loops connecting these
flaring sites. 3) During the first explosive acts of energy release the MHD
oscillations (most probably the sausage mode) with time period of 16 seconds
were excited in one system of the flare loops. 4) These oscillations were
maintained by the subsequent explosive acts of energy release in the impulsive
phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure
Origin of the submillimeter radio emission during the time-extended phase of a solar flare
Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly
varying and time-extended component which follows a short (few minutes)
impulsive phase and which lasts for a few tens of minutes to more than one
hour. The few examples discussed in the literature indicate that such
long-lasting submillimeter emission is most likely thermal bremsstrahlung. We
present a detailed analysis of the time-extended phase of the 2003 October 27
(M6.7) flare, combining 1-345 GHz total-flux radio measurements with X-ray,
EUV, and H{\alpha} observations. We find that the time-extended radio emission
is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is
entirely produced in the corona by hot and cool materials at 7-16 MK and 1-3
MK, respectively. At 345 GHz, there is an additional contribution from
chromospheric material at a few 10^4 K. These results, which may also apply to
other millimeter-submillimeter radio events, are not consistent with the
expectations from standard semi-empirical models of the chromosphere and
transition region during flares, which predict observable radio emission from
the chromosphere at all frequencies where the corona is transparent.Comment: 27 pages, 7 figure
Strong-disorder paramagnetic-ferromagnetic fixed point in the square-lattice +- J Ising model
We consider the random-bond +- J Ising model on a square lattice as a
function of the temperature T and of the disorder parameter p (p=1 corresponds
to the pure Ising model). We investigate the critical behavior along the
paramagnetic-ferromagnetic transition line at low temperatures, below the
temperature of the multicritical Nishimori point at T*= 0.9527(1),
p*=0.89083(3). We present finite-size scaling analyses of Monte Carlo results
at two temperature values, T=0.645 and T=0.5. The results show that the
paramagnetic-ferromagnetic transition line is reentrant for T<T*, that the
transitions are continuous and controlled by a strong-disorder fixed point with
critical exponents nu=1.50(4) and eta=0.128(8), and beta = 0.095(5). This fixed
point is definitely different from the Ising fixed point controlling the
paramagnetic-ferromagnetic transitions for T>T*. Our results for the critical
exponents are consistent with the hyperscaling relation 2 beta/nu - eta = d - 2
= 0.Comment: 32 pages, added refs and a discussion on hyperscalin
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Effects of Dexamethasone on Satellite Cells and Tissue Engineered Skeletal Muscle Units
Tissue engineered skeletal muscle has potential for application as a graft source for repairing soft tissue injuries, a model for testing pharmaceuticals, and a biomechanical actuator system for soft robots. However, engineered muscle to date has not produced forces comparable to native muscle, limiting its potential for repair and for use as an in vitro model for pharmaceutical testing. In this study, we examined the trophic effects of dexamethasone (DEX), a glucocorticoid that stimulates myoblast differentiation and fusion into myotubes, on our tissue engineered three-dimensional skeletal muscle units (SMUs). Using our established SMU fabrication protocol, muscle isolates were cultured with three experimental DEX concentrations (5, 10, and 25?nM) and compared to untreated controls. Following seeding onto a laminin-coated Sylgard substrate, the administration of DEX was initiated on day 0 or day 6 in growth medium or on day 9 after the switch to differentiation medium and was sustained until the completion of SMU fabrication. During this process, total cell proliferation was measured with a BrdU assay, and myogenesis and structural advancement of muscle cells were observed through immunostaining for MyoD, myogenin, desmin, and α-actinin. After SMU formation, isometric tetanic force production was measured to quantify function. The histological and functional assessment of the SMU showed that the administration of 10?nM DEX beginning on either day 0 or day 6 yielded optimal SMUs. These optimized SMUs exhibited formation of advanced sarcomeric structure and significant increases in myotube diameter and myotube fusion index, compared with untreated controls. Additionally, the optimized SMUs matured functionally, as indicated by a fivefold rise in force production. In conclusion, we have demonstrated that the addition of DEX to our process of engineering skeletal muscle tissue improves myogenesis, advances muscle structure, and increases force production in the resulting SMUs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140236/1/ten.tea.2015.0545.pd